A191907 Square array read by antidiagonals up: T(n,k) = -(n-1) if n divides k, else 1.
0, 1, 0, 1, -1, 0, 1, 1, 1, 0, 1, 1, -2, -1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, 1, -1, 0, 1, 1, 1, 1, 1, -2, 1, 0, 1, 1, 1, 1, -4, 1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, -5, 1, -3, -2, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -6, 1, 1, 1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, -4, 1, -2, 1, 0, 1, 1, 1, 1, 1, 1, 1, -7, 1, 1, 1, -3, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 1
Examples
Table starts: 0..0..0..0..0..0..0..0..0... 1.-1..1.-1..1.-1..1.-1..1... 1..1.-2..1..1.-2..1..1.-2... 1..1..1.-3..1..1..1.-3..1... 1..1..1..1.-4..1..1..1..1... 1..1..1..1..1.-5..1..1..1... 1..1..1..1..1..1.-6..1..1... 1..1..1..1..1..1..1.-7..1... 1..1..1..1..1..1..1..1.-8...
Programs
-
Mathematica
Clear[t, n, k]; nn = 30; t[n_, k_] := t[n, k] = If[Mod[n, k] == 0, -(k - 1), 1] MatrixForm[Transpose[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]]
-
PARI
N=20; M=matrix(N,N,n,k, if(n%k==0,1-k,1))~
Formula
If n divides k then T(n,k) = -(n-1) else 1.
Comments