A191936 Triangle read by rows of Legendre-Stirling numbers of the first kind.
1, 1, 0, 1, -2, 0, 1, -8, 12, 0, 1, -20, 108, -144, 0, 1, -40, 508, -2304, 2880, 0, 1, -70, 1708, -17544, 72000, -86400, 0, 1, -112, 4648, -89280, 808848, -3110400, 3628800, 0, 1, -168, 10920, -349568, 5808528, -48405888, 177811200, -203212800, 0
Offset: 1
Examples
Triangle begins: 1; 1, 0; 1, -2, 0; 1, -8, 12, 0; 1, -20, 108, -144, 0; 1, -40, 508, -2304, 2880, 0; 1, -70, 1708, -17544, 72000, -86400, 0; 1, -112, 4648, -89280, 808848, -3110400, 3628800, 0; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- G. E. Andrews, W. Gawronski and L. L. Littlejohn, The Legendre-Stirling Numbers
- G. E. Andrews et al., The Legendre-Stirling numbers, Discrete Math., 311 (2011), 1255-1272.
- J. Pan, Convolution Properties of the Generalized Stirling Numbers and the Jacobi-Stirling Numbers of the First Kind, Journal of Integer Sequences, 16 (2013), #13.9.2.
Crossrefs
Cf. A191935.
Programs
-
Mathematica
ps[n_, k_]:= ps[n, k]= If[k==n, 1, If[k==0, 0, ps[n-1, k-1] - n*(n-1)*ps[n-1, k]]]; Table[ps[n-1, n-k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
-
Sage
@CachedFunction def ps(n, k): if (k==n): return 1 elif (k==0): return 0 else: return ps(n-1, k-1) - n*(n-1)*ps(n-1, k) flatten([[ps(n-1, n-k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jun 07 2021
Formula
T(n, k) = ps(n-1, n-k), where ps(n, k) = ps(n-1, k-1) - n*(n-1)*ps(n-1, k), ps(n, 0) = 0, and ps(n, n) = 1. - G. C. Greubel, Jun 07 2021
Extensions
More terms from Omar E. Pol, Jan 10 2012
Comments