A192000 Sum of binomial numbers A000332(k+3), with k in the reduced residue system modulo n.
0, 1, 6, 16, 56, 71, 252, 296, 651, 721, 2002, 1282, 4368, 3402, 5782, 6672, 15504, 7947, 26334, 15702, 28868, 28457, 65780, 30212, 85580, 63063, 103284, 81452, 201376, 66102, 278256, 174624, 255794, 228684, 383166, 206838, 658008, 391419, 576394, 413244, 1086008
Offset: 1
Examples
a(6) = A000332(4) + A000292(8)= 1 + 70 = 71. a(6) = (6/6!)*(6*3666*(1/3) + 5*137*2 - 182) = 71. a(12) = A000332(4) + A000332(8) + A000332(10) + A000332(14) = 1 + 70 + 210 + 1001 = 1282. a(12) = (12/6!)*(12*18258*(1/3) + 5*407*2 - 182) = 1282.
Programs
-
PARI
a(n) = sum(k=0, n-1, if (gcd(n,k) == 1, binomial(k+3, 4))); \\ Michel Marcus, Feb 01 2016
Formula
Extensions
More terms from Michel Marcus, Feb 01 2016
Comments