cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192000 Sum of binomial numbers A000332(k+3), with k in the reduced residue system modulo n.

Original entry on oeis.org

0, 1, 6, 16, 56, 71, 252, 296, 651, 721, 2002, 1282, 4368, 3402, 5782, 6672, 15504, 7947, 26334, 15702, 28868, 28457, 65780, 30212, 85580, 63063, 103284, 81452, 201376, 66102, 278256, 174624, 255794, 228684, 383166, 206838, 658008, 391419, 576394, 413244, 1086008
Offset: 1

Views

Author

Wolfdieter Lang, Jun 22 2011

Keywords

Comments

The reduced residue system modulo n used here is the set of numbers k from the set {0,1,...,n-1} which satisfy gcd(k,n)=1. There are phi(n) = A000010(n) such numbers k.
This is the m=4 member of a family of sequences, call them rmnS(m) (reduced mod n sum), with entries rmnS(m;n):=sum(binomial(k+m-1,m),0<=k<=n-1 with gcd(k,n)=1), m>=0, n>=1. Recall gcd(0,n)=n.
The members for m=0, 1, 2 and 3 are A000010, A023896, A127415, and A189918, respectively, where in the m=1 and 2 cases the offset for n=1 should be taken as 0 (not 1).

Examples

			a(6) = A000332(4) + A000292(8)= 1 + 70 = 71.
a(6) = (6/6!)*(6*3666*(1/3) + 5*137*2 - 182) = 71.
a(12) = A000332(4) + A000332(8) + A000332(10) + A000332(14) = 1 + 70 + 210 + 1001 = 1282.
a(12) = (12/6!)*(12*18258*(1/3) + 5*407*2 - 182) = 1282.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, if (gcd(n,k) == 1, binomial(k+3, 4))); \\ Michel Marcus, Feb 01 2016

Formula

a(n) = sum(A000332(k+3), 0<=k<=n-1, gcd(k,n)=1), n>=1.
a(n) = (n/6!)*(n*(6*n^3+45*n^2+110*n+90)*P(1,n) + 5*(2*n^2+9*n+11)*P(-1,n) - P(-3,n)), n>=2, with P(k,n):= J(k,n)/n^k, where J(k,n) is the Jordan function (see A000010, A007434, A059376 - A059378, A069091 - A069095).

Extensions

More terms from Michel Marcus, Feb 01 2016