A192001 Triangle with sums of nonnegative integer powers of positive first n integers in the columns.
1, 2, 1, 3, 3, 1, 4, 6, 5, 1, 5, 10, 14, 9, 1, 6, 15, 30, 36, 17, 1, 7, 21, 55, 100, 98, 33, 1, 8, 28, 91, 225, 354, 276, 65, 1, 9, 36, 140, 441, 979, 1300, 794, 129, 1, 10, 45, 204, 784, 2275, 4425, 4890, 2316, 257, 1
Offset: 1
Examples
The triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... n=1: 1 n=2: 2 1 n=3: 3 3 1 n=4: 4 6 5 1 n=5: 5 10 14 9 1 n=6: 6 15 30 36 17 1 n=7: 7 21 55 100 98 33 1 n=8: 8 28 91 225 354 276 65 1 n=9: 9 36 140 441 979 1300 794 129 1 n=10: 10 45 204 784 2275 4425 4890 2316 257 1 n=11: 11 55 285 1296 4676 12201 20515 18700 6818 513 1 ... Reformatted and extended by _Wolfdieter Lang_, Jan 12 2013 a(4,2)= 5 = s(2,2) = 1^2 + 2^2. Recurrence: 55 = a(7,2) = (7-2)*a(6,1) - (a(2,1) + a(3,1) + a(4,1) + a(5,1)) = 5*15 - (1 + 3 + 6 + 10) = 55. - _Wolfdieter Lang_, Jan 12 2013 The first column, m=0 holds the integers 1,2,3,..., equal to the sums of 0th powers of the n first integers. The second column is 1, 1+2, 1+2+3, ... = A000217. The third column are the sums of squares, 1^2, 1^2+2^2, 1^2+2^2+3^3, ... = A000330, etc. - _M. F. Hasler_, Jan 13 2013
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available, see the link), p. 813.
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1991.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [scanned copy], p. 813.
Crossrefs
Cf. A103438 (omitting the first column of zeros, reversed).
Programs
-
Mathematica
Flatten[ Table[ HarmonicNumber[-m + n, -m], {n, 1, 10}, {m, 0, n - 1}]] (* Jean-François Alcover, Sep 26 2011 *)
-
PARI
A192001(n,m) = sum(k=1,n-m,k^m) \\ - M. F. Hasler, Jan 13 2013
Formula
a(n,m) = s(n-m,m), n-1 >= m >= 0, n >= 1, else 0, with s(n,m) := Sum_{k=1..n} k^m.
O.g.f. column no. m: see a comment above.
O.g.f.s and e.g.f.s for diagonals k >= 0: see a comment above.
Recurrence known by Ibn al-Haytham (see a comment and link under A000537, and comments by Bruno Berselli under the A-numbers of the first column sequences):
a(n,m) = (n-m)*a(n-1,m-1) - Sum_{j=m..n-2} a(j,m-1), n >= 1, n-1 >= m >= 1. a(n,0) = n. - Wolfdieter Lang, Jan 12 2013
Comments