A192009 Modified cyclic phone booth sequence: number of ways to occupy n labeled phone booths in a circle one by one, each time picking a phone booth adjacent to the smallest number of previously occupied phone booths.
1, 2, 6, 8, 40, 168, 504, 3456, 15552, 97920, 620928, 4465152, 31449600, 273369600, 2172096000, 20968243200, 192753561600, 2032260710400, 20942298316800, 243270107136000, 2758764950323200, 34958441123020800, 434690126954496000, 5946571752210432000, 80503989505228800000
Offset: 1
Keywords
Examples
For n=4, the A192009(n) = 6 ways of picking the phone booths are (1, 3, 2, 4), (1, 3, 4, 2), (2, 4, 1, 3), (2, 4, 3, 1), (3, 1, 2, 4), (3, 1, 4, 2), (4, 2, 1, 3), (4, 2, 3, 1).
Links
- Max Alekseyev, Table of n, a(n) for n = 1..100
Programs
-
Maple
A192009 := proc(n) local a,k,m; if n = 1 then return 1; end if; a := 0 ; for k from 0 to n/3 do m := (n-3*k)/2 ; if type (m,'integer') then a := a+(m+k-1)!*binomial(m+k,m)*2^k*k!*(m+k)! ; end if; end do: a*n ; end proc: seq(A192009(n),n=1..20) ; # R. J. Mathar, Sep 17 2016
-
Mathematica
r[n_] := {ToRules[Reduce[m >= 0 && k >= 0 && 2m+3k == n, {m, k}, Integers] ]}; f[{m_, k_}] := (m+k-1)!*Binomial[m + k, m]*2^k*k!*(m+k)!; a[n_] := n*Total[f /@ ({m, k} /. r[n])]; a[1] = 1; Array[a, 25] (* Jean-François Alcover, Sep 13 2016, after Max Alekseyev *)
-
PARI
{ A192009(n) = my(r,k); if(n==1,return(1)); r=0; forstep(m=lift(Mod(n,3)/2),n\2,3, k=(n-2*m)\3; r+=(m+k-1)!*binomial(m+k,m)*2^k*k!*(m+k)!); r*n; } \\ Max Alekseyev, Sep 11 2016
Formula
For n > 1, a(n) = n * Sum (m+k-1)!*binomial(m+k,m)*2^k*k!*(m+k)!, where the sum is taken over nonnegative m,k such that 2*m+3*k = n. - Max Alekseyev, Sep 11 2016
a(n) = n * A276657(n). - Max Alekseyev, Sep 11 2016
Extensions
Terms a(15) onward from Max Alekseyev, Sep 11 2016