A192015 Arithmetic derivative of prime powers: a(n) = A003415(A000961(n)).
0, 1, 1, 4, 1, 1, 12, 6, 1, 1, 32, 1, 1, 1, 10, 27, 1, 1, 80, 1, 1, 1, 1, 14, 1, 1, 1, 192, 1, 1, 1, 1, 108, 1, 1, 1, 1, 1, 1, 1, 1, 22, 75, 1, 448, 1, 1, 1, 1, 1, 1, 1, 1, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 405, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 34
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Power
Programs
-
Haskell
a192015 = a003415 . a000961 -- Reinhard Zumkeller, Apr 16 2014
-
Mathematica
Join[{0}, Reap[For[n = 1, n <= 300, n++, f = FactorInteger[n]; If[Length[f] == 1, Sow[n*Total[Apply[#2/#1&, f, {1}]]]]]][[2, 1]]] (* Jean-François Alcover, Feb 21 2014 *)
-
Python
from sympy import primepi, integer_nthroot, factorint def A192015(n): if n == 1: return 0 def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return sum((m*e//p for p,e in factorint(m).items())) # Chai Wah Wu, Aug 15 2024
Comments