A192021 The Wiener index of the binomial tree of order n.
0, 1, 10, 68, 392, 2064, 10272, 49216, 229504, 1048832, 4719104, 20972544, 92276736, 402657280, 1744838656, 7516209152, 32212287488, 137439019008, 584115683328, 2473901424640, 10445360988160, 43980466159616, 184717955563520, 774056190148608, 3236962240561152
Offset: 0
References
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.
- T. H. Cormen, C. E. Leiserson and R. L. Rivest: Introduction to Algorithms. MIT Press / McGraw-Hill (1990)
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009.
- Index entries for linear recurrences with constant coefficients, signature (10,-32,32).
Crossrefs
Cf. A192020.
Programs
-
Maple
a := proc(n) (n-1)*2^(2*n-1)+2^(n-1) end proc: seq(a(n), n = 0 .. 23);
-
Mathematica
LinearRecurrence[{10, -32, 32}, {0, 1, 10}, 23] (* Jean-François Alcover, Sep 23 2017 *)
Formula
a(n) = Sum_{k>=1} k*A192020(n,k).
From Colin Barker, Jul 07 2012: (Start)
a(n) = 2^(n-1)*(1+2^n*(n-1)).
a(n) = 10*a(n-1) - 32*a(n-2) + 32*a(n-3).
G.f.: x/((1-2*x)*(1-4*x)^2). (End)
Extensions
Initial 0 in the sample values which is Wiener index of singleton tree b(0), and consequent amendments to formulas. - Kevin Ryde, Sep 12 2019
Comments