cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192026 Square array read by antidiagonals: W(n,m) (n >= 3, m >= 1) is the Wiener index of the graph G(n,m) obtained from an n-wheel graph by adjoining m pendant edges at each node of the cycle.

Original entry on oeis.org

36, 72, 90, 120, 180, 168, 180, 300, 336, 270, 252, 450, 560, 540, 396, 336, 630, 840, 900, 792, 546, 432, 840, 1176, 1350, 1320, 1092, 720, 540, 1080, 1568, 1890, 1980, 1820, 1440, 918, 660, 1350, 2016, 2520, 2772, 2730, 2400, 1836, 1140, 792, 1650, 2520, 3240, 3696, 3822, 3600, 3060, 2280, 1386
Offset: 3

Views

Author

Emeric Deutsch, Jun 25 2011

Keywords

Examples

			W(3,1)=36 because in the graph with vertex set {O,A,B,C,A',B',C'} and edge set {OA, OB, OC, AB, BC, CA, AA', BB', CC'} we have 9 pairs of vertices at distance 1 (the edges), 9 pairs at distance 2 (A'O, A'B, A'C, B'O, B'A, B'C, C'O, C'A, C'B) and 3 pairs at distance 3 (A'B', B'C', C'A'); 9*1 + 9*2 + 3*3 = 36.
The square array starts:
   36,  90, 168,  270,  396,  546,  720,  918, ...;
   72, 180, 336,  540,  792, 1092, 1440, 1836, ...;
  120, 300, 560,  900, 1320, 1820, 2400, 3060, ...;
  180, 450, 840, 1350, 1980, 2730, 3600, 4590, ...;
		

Crossrefs

Cf. A049598.

Programs

  • Maple
    W := proc (n, m) options operator, arrow: n*(n-1)*(m+1)*(2*m+1) end proc: for n from 3 to 12 do seq(W(n-i, i+1), i = 0 .. n-3) end do; # yields the antidiagonals in triangular form
    W := proc (n, m) options operator, arrow: n*(n-1)*(m+1)*(2*m+1) end proc: for n from 3 to 12 do seq(W(n, m), m = 1 .. 10) end do; # yields the first 10 entries of each of rows 3,4,...,12.

Formula

W(n,1) = A049598(n-1).
W(n,m) = n*(n-1)*(m+1)*(2*m+1) (n >= 3, m >= 1).
The Wiener polynomial of the graph G(n,m) is P(n,m;t) = n*(m+2)*t + (1/2)*n*(m^2+n+5*m-3)*t^2 + n*m*(m+n-3)*t^3 + (1/2)*n*m^2*(n-3)*t^4.