A192034 Least k such that (product of proper divisors of k) mod (sum of proper divisors of k) equals n.
2, 8, 4, 9, 14, 25, 15, 49, 22, 18, 21, 57, 45, 169, 34, 69, 38, 205, 143, 119, 46, 87, 217, 93, 130, 133, 58, 323, 62, 111, 160, 553, 319, 63, 74, 129, 30, 305, 82, 75, 86, 36, 68, 335, 48, 159, 301, 355, 369, 171, 106, 177
Offset: 0
Keywords
Examples
a(0)=2 because A007956(2) mod A001065(2) = 1 mod 1 = 0, and 2 is the smallest number for which this is the case; a(1)=8 because A007956(8) mod A001065(8) = 8 mod 7 = 1, and 8 is the smallest number for which this is the case; a(2)=4 because A007956(4) mod A001065(4) = 2 mod 3 = 2, and 4 is the smallest number for which this is the case.
Programs
-
Maple
A192034 := proc(n) local k ; for k from 2 do if A191906(k) = n then return k ; end if; end do: end proc: # R. J. Mathar, Jul 01 2011
-
Mathematica
ds[n_]:=Module[{divs=Most[Divisors[n]]},Mod[Times@@divs,Total[divs]]]; Join[ {2},Transpose[Table[SelectFirst[Table[{n,ds[n]},{n,2,2000}],#[[2]] == i&],{i,60}]][[1]]] (* Harvey P. Dale, Apr 11 2015 *)
Extensions
Corrected by R. J. Mathar, Jul 01 2011
Example section corrected by Jon E. Schoenfield, Feb 24 2019
Comments