cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192035 Numbers k with equal remainders of (product of divisors of k) mod (sum of divisors of k) and (product of proper divisors of k) mod (sum of proper divisors of k).

Original entry on oeis.org

6, 14, 28, 51, 120, 260, 270, 496, 672, 679, 752, 924, 1260, 1320, 1540, 1960, 2055, 2262, 2651, 3808, 3948, 4381, 6413, 6435, 6944, 7900, 7980, 8010, 8128, 9809, 9945, 10242, 10920, 12690, 15456, 16830, 18018, 21728, 21970, 22320, 25296, 27930, 29190, 29792
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 21 2011

Keywords

Comments

The even perfect numbers (A000396) are a subsequence.
The deficient numbers (A005100) in the sequence are 14, 51, 679, 752, 2055, 2651, 4381, 6413, 9809, 9945, 21970, ... - Juri-Stepan Gerasimov, Jul 07 2011

Examples

			14 is in this sequence because (1*2*7*14) mod (1+2+7+14) = 196 mod 24 = 4 and (1*2*7) mod (1+2+7) = 14 mod 10 = 4.
		

Crossrefs

Programs

  • Mathematica
    erQ[n_]:=Module[{divs=Divisors[n],ds=DivisorSigma[1,n]},Mod[ Times@@ divs,ds] == Mod[ Times@@Most[divs],ds-n]]; Select[Range[2,30000],erQ] (* Harvey P. Dale, Jun 13 2015 *)
    Select[Range[2, 30000], Mod[(p = #^(DivisorSigma[0, #]/2)), (s = DivisorSigma[1, #])] == Mod[p/#, s - #] &] (* Amiram Eldar, Jul 21 2019 *)

Formula

{ k : A187680(k) = A191906(k) }.

Extensions

Values from a(4) onwards from R. J. Mathar, Jul 05 2011