A192035 Numbers k with equal remainders of (product of divisors of k) mod (sum of divisors of k) and (product of proper divisors of k) mod (sum of proper divisors of k).
6, 14, 28, 51, 120, 260, 270, 496, 672, 679, 752, 924, 1260, 1320, 1540, 1960, 2055, 2262, 2651, 3808, 3948, 4381, 6413, 6435, 6944, 7900, 7980, 8010, 8128, 9809, 9945, 10242, 10920, 12690, 15456, 16830, 18018, 21728, 21970, 22320, 25296, 27930, 29190, 29792
Offset: 1
Keywords
Examples
14 is in this sequence because (1*2*7*14) mod (1+2+7+14) = 196 mod 24 = 4 and (1*2*7) mod (1+2+7) = 14 mod 10 = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..600
Programs
-
Mathematica
erQ[n_]:=Module[{divs=Divisors[n],ds=DivisorSigma[1,n]},Mod[ Times@@ divs,ds] == Mod[ Times@@Most[divs],ds-n]]; Select[Range[2,30000],erQ] (* Harvey P. Dale, Jun 13 2015 *) Select[Range[2, 30000], Mod[(p = #^(DivisorSigma[0, #]/2)), (s = DivisorSigma[1, #])] == Mod[p/#, s - #] &] (* Amiram Eldar, Jul 21 2019 *)
Extensions
Values from a(4) onwards from R. J. Mathar, Jul 05 2011
Comments