A192062 Square Array T(ij) read by antidiagonals (from NE to SW) with columns 2j being the denominators of continued fraction convergents to square root of (j^2 + 2j).
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 4, 5, 3, 0, 1, 1, 5, 5, 11, 8, 1, 0, 1, 1, 6, 6, 19, 15, 13, 4, 0, 1, 1, 7, 7, 29, 24, 41, 21, 1, 0, 1, 1, 8, 8, 41, 35, 91, 56, 34, 5, 0, 1, 1, 9, 9, 55, 48, 169, 115, 153, 55, 1, 0, 1, 1, 10, 10, 71, 63, 281, 204, 436, 209, 89, 6
Offset: 0
Examples
Array as meant by the definition First column has index j=0 0 0 0 0 0 0 0 ... 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 ... 1 2 3 4 5 6 7 ... 2 3 4 5 6 7 8 ... 1 5 11 19 29 41 55 ... 3 8 15 24 35 48 63 ... 1 13 41 91 169 281 433 ... 4 21 56 115 204 329 496 ... . . .
Links
- Kenneth J Ramsey,Triangular and Fibonacci Numbers
Formula
Each column j is a recursive sequence defined by T(0,j)=0, T(1,j) = 1, T(2i,j)= T(2i-2,j)+T(2i-1,j) and T(2i+1,j) = T(2i-1,j)+j*T(2i,j). Also, T(n+2,j) = (j+2)*T(n,j)-T(n-2,j).
T(2n,j) = Sum(k=1 to n) C(k)*T(2*k,j-1) where the C(k) are the n-th row of the triangle A191579.
T(2*i,j) = T(i,j)*A(i,j) where A(i,j) is from the table A(i,j) of A191971.
T(4*i,j) = (T(2*i+1)^2 - T(2*i-1)^2)/j
T(4*i+2,j) = T(2*i+2,j)^2 - T(2*i,j)^2
Extensions
Corrected and edited by Olivier Gérard, Jul 05 2011
Comments