cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192068 a(n) = Fibonacci(2*n) - (n mod 2).

Original entry on oeis.org

0, 3, 7, 21, 54, 144, 376, 987, 2583, 6765, 17710, 46368, 121392, 317811, 832039, 2178309, 5702886, 14930352, 39088168, 102334155, 267914295, 701408733, 1836311902, 4807526976, 12586269024, 32951280099, 86267571271, 225851433717, 591286729878
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

Previous name was: 1-sequence of reduction of Lucas sequence by x^2 -> x+1.
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".

Examples

			(See A192243.)
		

Crossrefs

Partial sums of A081714.

Programs

  • Maple
    a := n -> combinat[fibonacci](2*n)-(n mod 2):
    seq(a(n), n=1..29); # Peter Luschny, Mar 10 2015
  • Mathematica
    c[n_] := LucasL[n];
    Table[c[n], {n, 1, 15}]
    q[x_] := x + 1; p[0, x_] := 1;
    p[n_, x_] :=  p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
       30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192243 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192068 *)
    (* Peter J. C. Moses, Jun 26 2011 *)
    Table[Fibonacci[2n]-Mod[n,2],{n,30}] (* Harvey P. Dale, Jul 11 2020 *)

Formula

Empirical g.f. and recurrence: x^2*(3-2*x)/(1-3*x+3*x^3-x^4), a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - Colin Barker, Feb 08 2012
a(n) = Fibonacci(2*n) - (n mod 2). - Peter Luschny, Mar 10 2015

Extensions

New name from Peter Luschny, Mar 10 2015