A192068 a(n) = Fibonacci(2*n) - (n mod 2).
0, 3, 7, 21, 54, 144, 376, 987, 2583, 6765, 17710, 46368, 121392, 317811, 832039, 2178309, 5702886, 14930352, 39088168, 102334155, 267914295, 701408733, 1836311902, 4807526976, 12586269024, 32951280099, 86267571271, 225851433717, 591286729878
Offset: 1
Keywords
Examples
(See A192243.)
Programs
-
Maple
a := n -> combinat[fibonacci](2*n)-(n mod 2): seq(a(n), n=1..29); # Peter Luschny, Mar 10 2015
-
Mathematica
c[n_] := LucasL[n]; Table[c[n], {n, 1, 15}] q[x_] := x + 1; p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192243 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192068 *) (* Peter J. C. Moses, Jun 26 2011 *) Table[Fibonacci[2n]-Mod[n,2],{n,30}] (* Harvey P. Dale, Jul 11 2020 *)
Formula
Empirical g.f. and recurrence: x^2*(3-2*x)/(1-3*x+3*x^3-x^4), a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - Colin Barker, Feb 08 2012
a(n) = Fibonacci(2*n) - (n mod 2). - Peter Luschny, Mar 10 2015
Extensions
New name from Peter Luschny, Mar 10 2015
Comments