A192095 Number of tatami tilings of an n X n square with exactly k horizontal dimers and n monomers (no restriction on the number of vertical dimers).
1, 2, 2, 2, 4, 4, 2, 2, 4, 6, 8, 6, 4, 2, 2, 4, 6, 12, 12, 8, 12, 12, 6, 4, 2, 2, 4, 6, 12, 18, 20, 18, 16, 16, 18, 20, 18, 12, 6, 4, 2, 2, 4, 6, 12, 18, 28, 34, 32, 32, 28, 28, 28, 28, 32, 32, 34, 28, 18, 12, 6, 4, 2, 2, 4, 6, 12, 18, 28, 44, 52, 54, 60, 58, 52, 54, 48, 40, 48, 54, 52, 58, 60, 54, 52, 44, 28, 18, 12, 6, 4, 2
Offset: 1
Examples
Here are the tatami tilings of the 3 X 3 square with three monomers: No horizontal dimer: _ _ _ _ _ _ |_| |_| | |_| | | |_| | |_| |_| |_|_|_| |_|_|_| One horizontal dimer: _ _ _ _ _ _ _ _ _ _ _ _ |_ _| | |_| |_| |_| |_| | |_ _| |_| |_| |_|_| | | |_|_| |_| |_| |_|_|_| |_ _|_| |_|_ _| |_|_|_| Two horizontal dimers: _ _ _ _ _ _ _ _ _ _ _ _ |_ _|_| |_|_ _| |_|_| | | |_|_| | |_ _| |_ _| | |_ _|_| |_|_ _| |_|_|_| |_|_|_| |_|_ _| |_ _|_| Three horizontal dimers: _ _ _ _ _ _ |_ _|_| |_|_ _| |_|_ _| |_ _|_| |_ _|_| |_|_ _|
Links
- 1. A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
- 2. A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Monomer-Dimer Tatami Tilings of Rectangular Regions, Electronic Journal of Combinatorics, 18(1) (2011) P109, 24 pages.
Comments