cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192099 Least number of parts in a partition of n into signed terms of the form 2^k-1.

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4
Offset: 1

Views

Author

Frank Ruskey and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jul 28 2011

Keywords

Comments

Another interpretation: Let T be the infinite binary tree with all leaves at the same level. Then a(n) is the least number of edges in any cut (X,Y) where |X| = n.

Examples

			a(43) = 3 since 43 = 31+15-3 and there is no way to write 43 using fewer terms of the form 2^k-1.
The smallest value of n for which a(n) = 5 is 83 = 31+15+7-3+1.
		

Programs

  • Mathematica
    a[n_]:= If[n < 2, Boole[n == 1], With[{m = IntegerLength[ n, 2] - 1}, a[n] = 1 + Min[ a[n - (2^m - 1)], a[(2^(m + 1) - 1) - n]]]] (* Michael Somos, Jul 28 2011 *)
  • PARI
    a(n)={ local(d); if ( n<=1, return(n) ); d = #binary(n)-1; return(1 + min( a(n-(2^d-1)), a((2^(d+1)-1)-n)) ); }

Formula

Let d(n) = floor(log(n)/log(2)). Then a(n) = 1 + min{ a(n-(2^d(n)-1)), a((2^(d(n)+1)-1)-n) } with a(0)=0 and a(1)=1.