A192175 Array of primes determined by distance to next prime, by antidiagonals.
2, 3, 7, 5, 13, 23, 11, 19, 31, 89, 17, 37, 47, 359, 139, 29, 43, 53, 389, 181, 199, 41, 67, 61, 401, 241, 211, 113, 59, 79, 73, 449, 283, 467, 293, 1831, 71, 97, 83, 479, 337, 509, 317, 1933, 523, 101, 103, 131, 491, 409, 619, 773, 2113, 1069, 887, 107
Offset: 1
Examples
Northwest corner: 2.....3.....5.....11....17....29....41 7.....13....19....37....43....67....79 23....31....47....53....61....73....83 89....359...389...401...449...479...491 139...181...241...283...337...409...421 For example, 31 is in row 3 because 31+2*3 is a prime, unlike 31+2*1 and 31+2*2. Every prime occurs exactly once. For each row, it is not known whether it is finite.
Programs
-
Mathematica
z = 5000; (* z=number of primes used *) row[1] = (#1[[1]] &) /@ Cases[Array[{#1, PrimeQ[1 + Prime[#1]] || PrimeQ[2 + Prime[#1]]} &, {z}], {_, True}]; Do[row[x] = Complement[(#1[[1]] &) /@ Cases[Array[{#1, PrimeQ[2 x + Prime[#1]]} &, {z}], {_, True}], Flatten[Array[row, {x - 1}]]], {x, 2, 16}]; TableForm[Array[Prime[row[#]] &, {10}]] (* A192175 array *) Flatten[Table[ Prime[row[k][[n - k + 1]]], {n, 1, 11}, {k, 1, n}]] (* A192175 sequence *) (* Peter J. C. Moses, Jun 20 2011 *)
Comments