cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192185 Number of partitions of n into upper Wythoff numbers (A001950).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 2, 3, 2, 4, 3, 5, 6, 5, 8, 7, 9, 13, 10, 16, 14, 18, 22, 21, 28, 29, 31, 42, 37, 50, 51, 57, 70, 69, 83, 91, 95, 120, 118, 139, 153, 161, 193, 200, 224, 254, 262, 312, 324, 360, 404, 427, 485, 525, 561, 640, 668, 758, 817, 878, 982, 1046, 1150, 1265, 1340, 1499, 1597, 1745, 1911, 2036, 2241, 2420, 2602, 2866, 3041, 3332, 3597, 3864, 4221, 4518
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2011

Keywords

Comments

This sequence is motivated by the identity:
Product_{n>=1} (1 - x^[n*phi])*(1 - x^[n*phi^2]) / (1 - x^n) = 1, where [.] denotes floor(.).
Therefore, the product of the g.f. of this sequence with the g.f. of A192184 yields the g.f. of the partition numbers (A000041).

Examples

			G.f.: A(x) = 1 + x^2 + x^4 + x^5 + x^6 + 2*x^7 + x^8 + 2*x^9 + 3*x^10 +...
where the g.f. may be expressed by the product:
A(x) = 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^10)*(1-x^13)*...)
in which the exponents of x are the upper Wythoff numbers (A001950):
[2,5,7,10,13,15,18,20,23,26,28,31,34,36,39,41,44,47,49,52,54,57,60,...].
a(12) counts these partitions: [10,2], [7,5], [5,5,2], [2,2,2,2,2,2]. _Clark Kimberling_, Mar 09 2014
		

Crossrefs

Programs

  • Mathematica
    t = Table[Floor[n+n*GoldenRatio], {n, 1, 200}]; p[n_] := IntegerPartitions[n, All, t]; Table[ p[n], {n, 0, 12}] (*shows partitions*)
    a[n_] := Length@p@n; a /@ Range[0, 80]
    (* Clark Kimberling, Mar 09 2014 *)
  • PARI
    {a(n)=local(phi=(sqrt(5)+1)/2,PWU=1/prod(m=1,ceil(n/phi),1-x^floor(m*phi^2)+x*O(x^n)));polcoeff(PWU,n)}

Formula

G.f.: Product_{n>=1} 1/(1 - x^floor(n*phi^2)), where phi = (sqrt(5)+1)/2.
G.f.: Product_{n>=1} 1/(1 - x^A001950(n)), where A001950 is the upper Wythoff sequence.