cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192285 Primitive pseudo anti-perfect numbers.

Original entry on oeis.org

5, 7, 8, 17, 22, 23, 31, 33, 38, 39, 41, 52, 53, 59, 67, 71, 73, 74, 81, 83, 94, 101, 103, 108, 109, 116, 122, 127, 129, 137, 143, 149, 151, 157, 158, 167, 171, 172, 178, 179, 193, 199, 214, 237, 241, 247, 257, 262, 263, 269, 283, 293, 311, 313, 319, 331, 333
Offset: 1

Views

Author

Paolo P. Lava, Jul 20 2011

Keywords

Comments

A primitive pseudo anti-perfect number is a pseudo anti-perfect number that is not a multiple of any other pseudo anti-perfect number.
Like A006036 but using anti-divisors.
Subset of A192270.

Crossrefs

Programs

  • Maple
    with(combinat);
    P:=proc(i)
    local a,j,k,n,ok,S,v;
    v:=array(1..10000); j:=0;
    for n from 1 to i do
      a:={};
      for k from 2 to n-1 do
        if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi;
      od;
      S:=subsets(a);
      while not S[finished] do
        if convert(S[nextvalue](), `+`)=n then
           if j=0 then j:=1; v[1]:=n; print(n); break;
           else
              ok:=1;
              for k from 1 to j do
                  if trunc(n/v[k])=n/v[k] then ok:=0; break; fi;
              od;
              j:=j+1; v[j]:=n; if ok=1 then print(n); fi;
           fi;
        fi;
      od;
    od;
    end: