A192290 Anti-amicable numbers.
14, 16, 92, 114, 5566, 6596, 1077378, 1529394, 3098834, 3978336, 70774930, 92974314
Offset: 1
Examples
sigma*(14) = 3+4+9 = 16; sigma*(16) = 3+11 = 14. sigma*(92) = 3+5+8+37+61= 114; sigma*(114) = 4+12+76 = 92. sigma*(5566) = 3+4+9+44+92+484+1012+1237+3711= 6596; sigma*(6596) = 3+8+79+136+776+167+4397 = 5566.
Programs
-
Maple
with(numtheory); A192290 := proc(q) local a,b,c,k,n; for n from 1 to q do a:=0; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od; b:=a; c:=0; for k from 2 to b-1 do if abs((b mod k)-k/2)<1 then c:=c+k; fi; od; if n=c and not a=c then print(n); fi; od; end: A192290(1000000000);
-
Python
from sympy import divisors def sigma_s(n): return sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n % d] + [d for d in divisors(2*n+1) if n > d >=2 and n % d]) A192290 = [n for n in range(1,10**4) if sigma_s(n) != n and sigma_s(sigma_s(n)) == n] # Chai Wah Wu, Aug 14 2014
Extensions
a(7)-a(12) from Donovan Johnson, Sep 12 2011
Comments