cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192290 Anti-amicable numbers.

Original entry on oeis.org

14, 16, 92, 114, 5566, 6596, 1077378, 1529394, 3098834, 3978336, 70774930, 92974314
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Like A063990 but using anti-divisors. sigma*(a)=b and sigma*(b)=a, where sigma*(n) is the sum of the anti-divisors of n. Anti-perfect numbers A073930 are not included in the sequence.
There are also chains of 3 or more anti-sociable numbers.
With 3 numbers the first chain is: 1494, 2056, 1856.
sigma*(1494) = 4+7+12+29+36+49+61+103+332+427+996 = 2056.
sigma*(2056) = 3+9+16+1371+457 = 1856.
sigma*(1856) = 3+47+79+128+1237 = 1494.
With 4 numbers the first chain is: 46, 58, 96, 64.
sigma*(46) = 3+4+7+13+31 = 58.
sigma*(58) = 3+4+5+9+13+23+39 = 96.
sigma*(96) = 64.
sigma*(64) = 3+43 = 46.
No other pairs with the larger term < 2147000000. - Jud McCranie Sep 24 2019

Examples

			sigma*(14) = 3+4+9 = 16; sigma*(16) = 3+11 = 14.
sigma*(92) = 3+5+8+37+61= 114; sigma*(114) = 4+12+76 = 92.
sigma*(5566) = 3+4+9+44+92+484+1012+1237+3711= 6596; sigma*(6596) = 3+8+79+136+776+167+4397 = 5566.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A192290 := proc(q)
    local a,b,c,k,n;
    for n from 1 to q do
      a:=0;
      for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      b:=a; c:=0;
      for k from 2 to b-1 do if abs((b mod k)-k/2)<1 then c:=c+k; fi; od;
      if n=c and not a=c then print(n); fi;
    od; end:
    A192290(1000000000);
  • Python
    from sympy import divisors
    def sigma_s(n):
        return sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] +
            [d for d in divisors(2*n-1) if n > d >=2 and n % d] +
            [d for d in divisors(2*n+1) if n > d >=2 and n % d])
    A192290 = [n for n in range(1,10**4) if sigma_s(n) != n and sigma_s(sigma_s(n)) == n] # Chai Wah Wu, Aug 14 2014

Extensions

a(7)-a(12) from Donovan Johnson, Sep 12 2011