A192291 Couple of numbers a, b for which sigma*(a)=b and sigma(b)-b=a, where sigma*(n) is the sum of the anti-divisors of n.
10, 14, 32, 58, 154, 182, 382, 758, 3830, 5962, 67815454, 94941602, 7172169026, 8196764584, 18624907238, 34790550682, 30033199624, 31387575416, 38857270202, 48571587730
Offset: 1
Examples
sigma*(10) = 3+4+7 = 14. sigma(14)-14 = 1+2+7 = 10. sigma*(32)= 3+5+7+9+13+21 = 58. sigma(58)-58 = 1+2+29 = 32.
Programs
-
Maple
with(numtheory); P:= proc(n) local a,b,c,i,ks; for i from 3 to n do a:={}; for k from 2 to i-1 do if abs((i mod k)- k/2) < 1 then a:=a union {k}; fi; od; b:=nops(a); c:=op(a); s:=0; for k from 1 to b do s:=s+c[k]; od; if sigma(s)-s=i then print(i,s); fi; od; end: P(10000);
Extensions
a(11)-a(20) from Hiroaki Yamanouchi, Sep 28 2015
Comments