cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A192293 Let sigma*_m (n) be the result of applying the sum of anti-divisors m times to n; call n (m,k)-anti-perfect if sigma*_m (n) = k*n; this sequence gives the (2,3)-anti-perfect numbers.

Original entry on oeis.org

32, 98, 2524, 199282, 1336968
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Like A019281 but using anti-divisors.
a(6) > 2*10^7. - Chai Wah Wu, Dec 02 2014

Examples

			sigma*(32)= 3+5+7+9+13+21=58; sigma*(58)= 3+4+5+9+13+23+39=96 and 3*32=96.
sigma*(98)= 3+4+5+13+15+28+39+65=172; sigma*(172)= 3+5+7+8+15+23+49+69+115=294 and 3*98=294.
sigma*(2524)= 3+7+8+9+11+17+27+33+49+51+99+103+153+187+297+459+561+721+1683=4478; sigma*(4478)= 3+4+5+9+13+15+45+53+169+199+597+689+995+1791+2985=7572 and 3*2524=7572.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(n) local i,j,k,s,s1; for i from 3 to n do
    k:=0; j:=i; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; s:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2;
    k:=0; j:=s; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; s1:=sigma(2*s+1)+sigma(2*s-1)+sigma(s/2^k)*2^(k+1)-6*s-2;
    if s1/i=3 then print(i); fi; od; end: P(10^9);
  • Python
    from sympy import divisors
    def antidivisors(n):
        return [2*d for d in divisors(n) if n > 2*d and n % (2*d)] + \
            [d for d in divisors(2*n-1) if n > d >=2 and n % d] + \
            [d for d in divisors(2*n+1) if n > d >=2 and n % d]
    A192293_list = []
    for n in range(1,10**4):
        if 3*n == sum(antidivisors(sum(antidivisors(n)))):
             A192293_list.append(n) # Chai Wah Wu, Dec 02 2014

Extensions

a(4)-a(5) from Chai Wah Wu, Dec 01 2014

A192290 Anti-amicable numbers.

Original entry on oeis.org

14, 16, 92, 114, 5566, 6596, 1077378, 1529394, 3098834, 3978336, 70774930, 92974314
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Like A063990 but using anti-divisors. sigma*(a)=b and sigma*(b)=a, where sigma*(n) is the sum of the anti-divisors of n. Anti-perfect numbers A073930 are not included in the sequence.
There are also chains of 3 or more anti-sociable numbers.
With 3 numbers the first chain is: 1494, 2056, 1856.
sigma*(1494) = 4+7+12+29+36+49+61+103+332+427+996 = 2056.
sigma*(2056) = 3+9+16+1371+457 = 1856.
sigma*(1856) = 3+47+79+128+1237 = 1494.
With 4 numbers the first chain is: 46, 58, 96, 64.
sigma*(46) = 3+4+7+13+31 = 58.
sigma*(58) = 3+4+5+9+13+23+39 = 96.
sigma*(96) = 64.
sigma*(64) = 3+43 = 46.
No other pairs with the larger term < 2147000000. - Jud McCranie Sep 24 2019

Examples

			sigma*(14) = 3+4+9 = 16; sigma*(16) = 3+11 = 14.
sigma*(92) = 3+5+8+37+61= 114; sigma*(114) = 4+12+76 = 92.
sigma*(5566) = 3+4+9+44+92+484+1012+1237+3711= 6596; sigma*(6596) = 3+8+79+136+776+167+4397 = 5566.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A192290 := proc(q)
    local a,b,c,k,n;
    for n from 1 to q do
      a:=0;
      for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      b:=a; c:=0;
      for k from 2 to b-1 do if abs((b mod k)-k/2)<1 then c:=c+k; fi; od;
      if n=c and not a=c then print(n); fi;
    od; end:
    A192290(1000000000);
  • Python
    from sympy import divisors
    def sigma_s(n):
        return sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] +
            [d for d in divisors(2*n-1) if n > d >=2 and n % d] +
            [d for d in divisors(2*n+1) if n > d >=2 and n % d])
    A192290 = [n for n in range(1,10**4) if sigma_s(n) != n and sigma_s(sigma_s(n)) == n] # Chai Wah Wu, Aug 14 2014

Extensions

a(7)-a(12) from Donovan Johnson, Sep 12 2011

A192292 Pairs of numbers a, b for which sigma*(a)=b and sigma(b)-b-1=a, where sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

7, 10, 14, 16, 45, 86, 2379, 2324, 4213, 5866, 27323, 33604, 1303227, 1737628, 3722831, 4208308, 15752651, 18706108, 6094085371, 8114352508, 30090695519, 40119052564
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Betrothed numbers mixed with anti-divisors.
a(23) > 10^11. - Hiroaki Yamanouchi, Sep 28 2015

Examples

			sigma*(45)= 2+6+7+10+13+18+30 = 86.
sigma(86)-86-1 = 2+43 = 45.
sigma*(2379) = 2+6+26+67+71+78+122+366+1586 = 2374.
sigma(2324)-2324-1 = 2+4+7+14+28+83+166+332+581+1162 = 2379.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(n) local b,c,i,j,k;
    for i from 3 to n do k:=0; j:=i;
    while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
    b:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2;
    if sigma(b)-b-1=i then print(i); print(b); fi;
    od; end: P(10^9);

Extensions

a(13)-a(14) from Paolo P. Lava, Dec 03 2014
a(7)-a(8) swapped and a(15)-a(22) added by Hiroaki Yamanouchi, Sep 28 2015
Showing 1-3 of 3 results.