cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A192290 Anti-amicable numbers.

Original entry on oeis.org

14, 16, 92, 114, 5566, 6596, 1077378, 1529394, 3098834, 3978336, 70774930, 92974314
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Like A063990 but using anti-divisors. sigma*(a)=b and sigma*(b)=a, where sigma*(n) is the sum of the anti-divisors of n. Anti-perfect numbers A073930 are not included in the sequence.
There are also chains of 3 or more anti-sociable numbers.
With 3 numbers the first chain is: 1494, 2056, 1856.
sigma*(1494) = 4+7+12+29+36+49+61+103+332+427+996 = 2056.
sigma*(2056) = 3+9+16+1371+457 = 1856.
sigma*(1856) = 3+47+79+128+1237 = 1494.
With 4 numbers the first chain is: 46, 58, 96, 64.
sigma*(46) = 3+4+7+13+31 = 58.
sigma*(58) = 3+4+5+9+13+23+39 = 96.
sigma*(96) = 64.
sigma*(64) = 3+43 = 46.
No other pairs with the larger term < 2147000000. - Jud McCranie Sep 24 2019

Examples

			sigma*(14) = 3+4+9 = 16; sigma*(16) = 3+11 = 14.
sigma*(92) = 3+5+8+37+61= 114; sigma*(114) = 4+12+76 = 92.
sigma*(5566) = 3+4+9+44+92+484+1012+1237+3711= 6596; sigma*(6596) = 3+8+79+136+776+167+4397 = 5566.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A192290 := proc(q)
    local a,b,c,k,n;
    for n from 1 to q do
      a:=0;
      for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
      b:=a; c:=0;
      for k from 2 to b-1 do if abs((b mod k)-k/2)<1 then c:=c+k; fi; od;
      if n=c and not a=c then print(n); fi;
    od; end:
    A192290(1000000000);
  • Python
    from sympy import divisors
    def sigma_s(n):
        return sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] +
            [d for d in divisors(2*n-1) if n > d >=2 and n % d] +
            [d for d in divisors(2*n+1) if n > d >=2 and n % d])
    A192290 = [n for n in range(1,10**4) if sigma_s(n) != n and sigma_s(sigma_s(n)) == n] # Chai Wah Wu, Aug 14 2014

Extensions

a(7)-a(12) from Donovan Johnson, Sep 12 2011

A192291 Couple of numbers a, b for which sigma*(a)=b and sigma(b)-b=a, where sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

10, 14, 32, 58, 154, 182, 382, 758, 3830, 5962, 67815454, 94941602, 7172169026, 8196764584, 18624907238, 34790550682, 30033199624, 31387575416, 38857270202, 48571587730
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

a(21) > 10^11. - Hiroaki Yamanouchi, Sep 28 2015

Examples

			sigma*(10) = 3+4+7 = 14.
sigma(14)-14 = 1+2+7 = 10.
sigma*(32)= 3+5+7+9+13+21 = 58.
sigma(58)-58 = 1+2+29 = 32.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:= proc(n)
    local a,b,c,i,ks;
    for i from 3 to n do
       a:={};
       for k from 2 to i-1 do
         if abs((i mod k)- k/2) < 1 then
           a:=a union {k};
         fi;
       od;
       b:=nops(a); c:=op(a); s:=0;
       for k from 1 to b do
           s:=s+c[k];
       od;
       if sigma(s)-s=i then
          print(i,s);
       fi;
    od;
    end:
    P(10000);

Extensions

a(11)-a(20) from Hiroaki Yamanouchi, Sep 28 2015

A192292 Pairs of numbers a, b for which sigma*(a)=b and sigma(b)-b-1=a, where sigma*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

7, 10, 14, 16, 45, 86, 2379, 2324, 4213, 5866, 27323, 33604, 1303227, 1737628, 3722831, 4208308, 15752651, 18706108, 6094085371, 8114352508, 30090695519, 40119052564
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2011

Keywords

Comments

Betrothed numbers mixed with anti-divisors.
a(23) > 10^11. - Hiroaki Yamanouchi, Sep 28 2015

Examples

			sigma*(45)= 2+6+7+10+13+18+30 = 86.
sigma(86)-86-1 = 2+43 = 45.
sigma*(2379) = 2+6+26+67+71+78+122+366+1586 = 2374.
sigma(2324)-2324-1 = 2+4+7+14+28+83+166+332+581+1162 = 2379.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(n) local b,c,i,j,k;
    for i from 3 to n do k:=0; j:=i;
    while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
    b:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2;
    if sigma(b)-b-1=i then print(i); print(b); fi;
    od; end: P(10^9);

Extensions

a(13)-a(14) from Paolo P. Lava, Dec 03 2014
a(7)-a(8) swapped and a(15)-a(22) added by Hiroaki Yamanouchi, Sep 28 2015

A229860 Let sigma*_m (n) be result of applying sum of anti-divisors m times to n; call n (m,k)-anti-perfect if sigma*_m (n) = k*n; sequence gives the (2,k)-anti-perfect numbers.

Original entry on oeis.org

3, 5, 7, 8, 14, 16, 32, 41, 56, 92, 98, 114, 167, 507, 543, 946, 2524, 3433, 5186, 5566, 6596, 6707, 6874, 8104, 9615, 15690, 17386, 27024, 84026, 87667, 167786, 199282, 390982, 1023971, 1077378, 1336968, 1529394, 2054435, 2276640, 2667584, 3098834, 3978336
Offset: 1

Views

Author

Paolo P. Lava, Oct 01 2013

Keywords

Comments

Tested up to n = 10^6.

Examples

			Anti-divisors of 92 are 3, 5, 8, 37, 61. Their sum is 114.
Again, anti-divisors of 114 are 4, 12, 76. Their sum is 92 and 92 / 92 = 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,i,j,k,n;
    for n from 3 to q do a:=n; for i from 1 to h do
    k:=0; j:=a; while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
    a:=sigma(2*a+1)+sigma(2*a-1)+sigma(a/2^k)*2^(k+1)-6*a-2; od;
    if type(a/n,integer) then print(n); fi; od; end: P(10^6,2);

Extensions

Offset corrected and a(34)-a(42) from Donovan Johnson, Jan 09 2014

A229861 Let sigma*_m (n) be result of applying sum of anti-divisors m times to n; call n (m,k)-anti-perfect if sigma*_m (n) = k*n; sequence gives the (3,k)-anti-perfect numbers.

Original entry on oeis.org

4, 5, 8, 32, 41, 54, 56, 68, 123, 946, 1494, 1856, 2056, 5186, 6874, 8104, 10419, 17386, 27024, 31100, 84026, 167786, 272089, 733253, 812600, 1188000, 1544579, 2667584, 4921776, 16360708, 21524990, 27914146
Offset: 1

Views

Author

Paolo P. Lava, Oct 01 2013

Keywords

Comments

Tested up to n = 10^6.

Examples

			Anti-divisors of 54 are 4, 12, 36. Their sum is 52.
Again, anti-divisors of 52 are 3, 5, 7, 8, 15, 21, 35. Their sum is 94.
Finally, anti-divisors of 94 are 3, 4, 7, 9, 11, 17, 21, 27, 63. Their sum is 162 and 162 / 54 = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,i,j,k,n;
    for n from 4 to q do a:=n; for i from 1 to h do
    k:=0; j:=a; while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
    a:=sigma(2*a+1)+sigma(2*a-1)+sigma(a/2^k)*2^(k+1)-6*a-2; od;
    if type(a/n,integer) then print(n); fi; od; end: P(10^6,3);

Extensions

Offset corrected and a(26)-a(32) from Donovan Johnson, Jan 09 2014

A229862 Let sigma*_m (n) be result of applying sum of anti-divisors m times to n; call n (m,k)-anti-perfect if sigma*_m (n) = k*n; sequence gives the (4,k)-anti-perfect numbers.

Original entry on oeis.org

5, 6, 7, 8, 14, 16, 41, 46, 56, 58, 64, 92, 96, 114, 946, 3307, 3325, 5186, 5566, 6596, 6874, 7982, 8104, 14621, 17386, 27024, 44217, 45970, 84026, 91282, 135592, 167786, 1077378, 1231058, 1529394, 2667584, 2873910, 3098834, 3978336, 4292594, 4921776, 27914146
Offset: 1

Views

Author

Paolo P. Lava, Oct 01 2013

Keywords

Comments

Tested up to n = 10^6.

Examples

			Anti-divisors of 58 are 3, 4, 5, 9, 13, 23, 39. Their sum is 96.
The only anti-divisor of 96 is 64.
Again, anti-divisors of 64 are 3, 43. Their sum is 46. Finally, anti-divisors of 46 are 3, 4, 7, 13, 31. Their sum is 58 and 58 / 58 = 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,i,j,k,n;
    for n from 5 to q do a:=n; for i from 1 to h do
    k:=0; j:=a; while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
    a:=sigma(2*a+1)+sigma(2*a-1)+sigma(a/2^k)*2^(k+1)-6*a-2; od;
    if type(a/n,integer) then print(n); fi; od; end: P(10^6,4);

Extensions

Offset corrected and a(33)-a(42) from Donovan Johnson, Jan 09 2014
Showing 1-6 of 6 results.