A192317 G.f.: A(x) = Sum_{n>=0} x^n/(1-x)^A038722(n), where A038722(n) = floor(sqrt(2*n)+1/2)^2 - n + 1.
1, 1, 2, 5, 10, 21, 47, 103, 217, 451, 951, 2047, 4439, 9548, 20231, 42355, 88373, 185343, 392297, 836502, 1787158, 3803651, 8035998, 16846041, 35121641, 73103052, 152493454, 319600236, 673256721, 1423293503, 3011396839, 6358756643, 13372146841
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 47*x^6 +... which satisfies: A(x) = 1 + x/(1-x) + x^2/(1-x)^3 + x^3/(1-x)^2 + x^4/(1-x)^6 + x^5/(1-x)^5 + x^6*(1+x)^4 +... A(x) = 1 + (x/(1-x)) + (x/(1-x))^2*(1/(1-x)^2-x^2)/(1/(1-x)-x) + (x/(1-x))^4*(1/(1-x)^3-x^3)/(1/(1-x)-x) + (x/(1-x))^7*(1/(1-x)^4-x^4)/(1/(1-x)-x) + (x/(1-x))^11*(1/(1-x)^5-x^5)/(1/(1-x)-x) +... Sequence A038722 begins: [1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
Programs
Formula
G.f.: A(x) = 1 + Sum_{n>=1} (x/(1-x))^(n*(n-1)/2+1) * (1/(1-x)^n - x^n)/(1/(1-x) - x).
G.f.: A(x) = Sum_{n>=0} x^A038722(n)/(1-x)^n.
Comments