A192318 G.f. A(x) satisfies A(x) = Sum_{n>=0} x^n * A(x)^A038722(n), where A038722(n) = floor(sqrt(2*n)+1/2)^2 - n + 1.
1, 1, 2, 6, 18, 61, 218, 804, 3052, 11831, 46646, 186487, 754177, 3079767, 12681568, 52595999, 219515014, 921264092, 3885468897, 16459470468, 70001813240, 298785285316, 1279450906737, 5495145204550, 23665623371950, 102175095587827
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 61*x^5 + 218*x^6 + 804*x^7 +... which satisfies: A(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^2 + x^4*A(x)^6 + x^5*A(x)^5 + x^6*A(x)^4 +... A(x) = 1 + x*A(x) + x^2*A(x)^2*(A(x)^2-x^2)/(A(x)-x) + x^4*A(x)^4*(A(x)^3-x^3)/(A(x)-x) + x^7*A(x)^7*(A(x)^4-x^4)/(A(x)-x) + x^11*A(x)^11*(A(x)^5-x^5)/(A(x)-x) +... Sequence A038722 begins: [1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
Crossrefs
Cf. A038722.
Programs
Formula
G.f. satisfies: A(x) = 1 + Sum_{n>=1} (x*A(x))^(n*(n-1)/2+1) * (A(x)^n - x^n)/(A(x)-x).
G.f. satisfies: A(x) = Sum_{n>=0} x^A038722(n) * A(x)^n.
Comments