cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192318 G.f. A(x) satisfies A(x) = Sum_{n>=0} x^n * A(x)^A038722(n), where A038722(n) = floor(sqrt(2*n)+1/2)^2 - n + 1.

Original entry on oeis.org

1, 1, 2, 6, 18, 61, 218, 804, 3052, 11831, 46646, 186487, 754177, 3079767, 12681568, 52595999, 219515014, 921264092, 3885468897, 16459470468, 70001813240, 298785285316, 1279450906737, 5495145204550, 23665623371950, 102175095587827
Offset: 0

Views

Author

Paul D. Hanna, Jun 27 2011

Keywords

Comments

A038722 is a self-inverse permutation of the natural numbers. Thus, the function defined by g(x,y) = Sum_{n>=0} x^n*y^A038722(n) is symmetric: g(x,y) = g(y,x). What are the properties of a function A(x) that satisfies: A(x) = g(x,A(x)) = g(A(x),x)?

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 61*x^5 + 218*x^6 + 804*x^7 +...
which satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^2 + x^4*A(x)^6 + x^5*A(x)^5 + x^6*A(x)^4 +...
A(x) = 1 + x*A(x) + x^2*A(x)^2*(A(x)^2-x^2)/(A(x)-x) + x^4*A(x)^4*(A(x)^3-x^3)/(A(x)-x) + x^7*A(x)^7*(A(x)^4-x^4)/(A(x)-x) + x^11*A(x)^11*(A(x)^5-x^5)/(A(x)-x) +...
Sequence A038722 begins:
[1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
		

Crossrefs

Cf. A038722.

Programs

  • PARI
    {b(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,sqrtint(2*n)+2,(x*A+x*O(x^n))^(m*(m-1)/2+1)*(A^m-x^m)/(A-x)));polcoeff(A,n)}
    
  • PARI
    {A038722(n)=local(t=floor(1/2+sqrt(2*n))); if(n<1, 0, t^2-n+1)}
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*(A+x*O(x^n))^A038722(m)));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} (x*A(x))^(n*(n-1)/2+1) * (A(x)^n - x^n)/(A(x)-x).
G.f. satisfies: A(x) = Sum_{n>=0} x^A038722(n) * A(x)^n.