A192324 Sequence of numbers formed as remainder of Mersenne numbers divided by primes.
1, 0, 2, 1, 9, 11, 8, 8, 5, 8, 1, 25, 32, 0, 8, 27, 32, 26, 12, 47, 7, 35, 46, 3, 94, 19, 75, 61, 22, 3, 7, 116, 67, 24, 137, 63, 149, 42, 60, 9, 71, 155, 39, 11, 72, 50, 47, 40, 23, 25, 70, 47, 31, 15, 127, 172, 73, 109, 117, 58, 29, 246, 201, 207, 283, 52, 127, 31, 138, 55, 284, 23
Offset: 1
Keywords
Examples
a(1) = mod(mersenne(1)/prime(1)) = mod(1/2) = 1 a(2) = mod(mersenne(2)/prime(2)) = mod(3/3) = 0 a(3) = mod(mersenne(3)/prime(3)) = mod(7/5) = 2 a(4) = mod(mersenne(4)/prime(4)) = mod(15/7) = 1 a(5) = mod(mersenne(5)/prime(5)) = mod(31/11) = 9
Programs
-
MATLAB
% n = number of computed terms of sequence for i=1:n, a(i) = mod(mersenne(i),prime(i)) ; end
-
PARI
a(n) = (2^n-1)%prime(n)
-
PARI
a(n)=lift(Mod(2,prime(n))^n-1) \\ Charles R Greathouse IV, Jun 29 2011
Formula
a(n) = mod (mersenne(n) / prime(n))
where mersenne(n) returns n-th mersenne number and, correspondingly, prime(n) returns n-th prime number.
Comments