A192344 Constant term of the reduction of n-th polynomial at A161516 by x^2->x+1.
1, 0, 5, 4, 49, 108, 637, 2024, 9329, 34104, 143621, 554092, 2255809, 8883876, 35708701, 141734480, 566950433, 2257038576, 9011796293, 35916665428, 143306508433, 571395546204, 2279250017533, 9089366457656, 36253101237521, 144581807030568
Offset: 1
Keywords
Examples
The first four polynomials at A161516 and their reductions are as follows: p0(x)=1 -> 1 p1(x)=x -> x p2(x)=4+x+x^2 -> 5+2x p3(x)=12x+3x^2+x^3 -> 4+17x. From these, we read A192344=(1,0,5,4,...) and A192345=(1,1,2,17...)
Programs
-
Mathematica
q[x_] := x + 1; d = Sqrt[x + 4]; p[n_, x_] := ((x + d)^n + (x - d)^n )/ 2 (* polynomials defined at A161516 *) Table[Expand[p[n, x]], {n, 0, 4}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192344 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192345 *)
Formula
Conjecture a(n) = 2*a(n-1)+10*a(n-2)-6*a(n-3)-9*a(n-4). G.f.: -(5*x^2+2*x-1) / (9*x^4+6*x^3-10*x^2-2*x+1). [Colin Barker, Nov 22 2012]
Comments