A192353 Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+1.
1, 0, 5, 1, 42, 43, 429, 820, 4861, 12597, 58598, 177859, 732825, 2417416, 9358677, 32256553, 120902914, 426440955, 1571649221, 5610955132, 20497829133, 73645557469, 267803779710, 965384509651, 3502058316337, 12646311635088, 45818284122149
Offset: 1
Keywords
Examples
(See A192352 for a related example.)
Programs
-
Mathematica
q[x_] := x + 1; d = 2; p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *) Table[Expand[p[n, x]], {n, 0, 6}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}] Table[Coefficient[Part[t,n],x,0], {n,1,30}](* A192353 *) Table[Coefficient[Part[t,n],x,1], {n,1,30}] (* A192354 *)
Formula
Empirical G.f.: x*(x^3-4*x^2-2*x+1)/((x^2+3*x+1)*(5*x^2-5*x+1)). [Colin Barker, Sep 11 2012]
Comments