cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192355 Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+2.

Original entry on oeis.org

1, 0, 6, 2, 70, 90, 926, 2002, 13110, 37130, 194446, 640002, 2973350, 10653370, 46333566, 174174002, 730176790, 2820264810, 11582386286, 45425564002, 184414199430, 729520967450, 2942491360606, 11696742970002, 47006639297270, 187367554937290
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+2, see A192232.
Direct sums can be obtained for A192355 and A192356 in the following way. The polynomials p_{n}(x) can be given in series form by p_{n}(x) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*4*k*x^(n-2*k). For the reduction x^2 -> x+2 then the general form can be seen as x^n -> J_{n}*x + phi_{n}, where J_{n} = A001045(n) are the Jacobsthal numbers and phi_{n} = A078008. The reduction of p_{n}(x) now takes the form p_{n}(x) = x * Sum_{k=0..floor(n/2)} binomial(n,2*k)*4^k*J_{n-2*k} + Sum_{k=0..floor(n/2)} binomial(n,2*k)*4^k*phi_{n-2*k}. Evaluating the series leads to p_{n}(x) = x * (4^n - (-3)^n - 1 + 2^n*delta(n,0))/6 + (4^n + 2*(-3)^n + 2 + 2^n*delta(n,0))/6, where delta(n,k) is the Kronecker delta. - G. C. Greubel, Oct 29 2018

Examples

			(See A192352 for a related example.)
		

Crossrefs

Programs

  • Magma
    [1] cat [(4^n + 2*(-3)^n + 2)/6: n in [1..50]]; // G. C. Greubel, Oct 20 2018
  • Mathematica
    q[x_] := x + 2; d = 2;
    p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *)
    Table[Expand[p[n, x]], {n, 0, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
      (* A192355 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
      (* A192356 *)
    Join[{1}, Table[(4^n + 2*(-3)^n + 2)/6, {n, 1, 50}]] (* G. C. Greubel, Oct 20 2018 *)
  • PARI
    for(n=0, 50, print1(if(n==0, 1, (4^n + 2*(-3)^n + 2)/6), ", ")) \\ G. C. Greubel, Oct 20 2018
    

Formula

Empirical G.f.: x*(2*x^3-5*x^2-2*x+1)/((x-1)*(3*x+1)*(4*x-1)). - Colin Barker, Sep 12 2012
From G. C. Greubel, Oct 28 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 4^k * phi_{n-2*k}, where phi_{n} = A078008(n).a(n) = (4^n + 2*(-3)^n + 2 + 2^n*delta(n,0))/6, with delta(n,0) = 1 if n=0, 0 else. (End)