A192368 Number of lattice paths from (0,0) to (n,n) using steps (1,0), (2,0), (0,2), (1,1).
1, 1, 6, 19, 94, 396, 1870, 8541, 40284, 189274, 899260, 4281168, 20487156, 98299384, 473118174, 2282322211, 11034087438, 53443135944, 259283934816, 1259795078566, 6129223177272, 29856164309124, 145592506783224, 710686739172096, 3472285996766556, 16979257639328076
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
s := RootOf( 16*x*(3*s+1)*s+(s^2-18*s+1)*(s-1), s): ogf := -16*(3*s+1)*s^(3/2)/(3*s^4+2*s^3-76*s^2+6*s+1): series(ogf, x=0, 20); # Mark van Hoeij, Apr 16 2013 # second Maple program: b:= proc(x, y) option remember; `if`(min(x, y)<0, 0, `if`(max(x, y)=0, 1, b(x-1, y)+b(x-2, y)+b(x, y-2)+b(x-1, y-1))) end: a:= n-> b(n$2): seq(a(n), n=0..35); # Alois P. Heinz, May 16 2017
-
Mathematica
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k - 1] + a[n, k - 2] + a[n - 1, k - 1] + a[n - 2, k]; a[, ] = 0; a[n_] := a[n, n]; a /@ Range[0, 25] (* Jean-François Alcover, Oct 14 2019 *)
-
PARI
/* same as in A092566 but use */ steps=[[1,0], [2,0], [0,2], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
Formula
G.f. -16*(3*s+1)*s^(3/2)/(3*s^4+2*s^3-76*s^2+6*s+1) where s satisfies 16*x*(3*s+1)*s+(s^2-18*s+1)*(s-1) = 0. - Mark van Hoeij, Apr 16 2013