A192377 Coefficient of x in the reduction by x^2->x+2 of the polynomial p(n,x) defined below in Comments.
0, 2, 4, 20, 68, 262, 968, 3624, 13512, 50442, 188236, 702524, 2621836, 9784846, 36517520, 136285264, 508623504, 1898208786, 7084211604, 26438637668, 98670339028, 368242718486, 1374300534872, 5128959421048, 19141537149272, 71437189176090
Offset: 1
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x)=1 -> 1 p(1,x)=2x -> 2x p(2,x)=4+x+3x^2 -> 7+4x p(3,x)=16x+4x^2+4x^3 -> 16+20x p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 73+68x. From these, read (0,2,4,20,68,...)
Links
- Index entries for linear recurrences with constant coefficients, signature (2,6,2,-1).
Programs
-
Mathematica
(* See A192376. *)
Formula
From Colin Barker, Dec 09 2012: (Start)
a(n) = 2*a(n-1) + 6*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: 2*x^2 / ((x+1)^2*(x^2-4*x+1)). (End)
Comments