A192376 Constant term of the reduction by x^2->x+2 of the polynomial p(n,x) defined below in Comments.
1, 0, 7, 16, 73, 256, 975, 3616, 13521, 50432, 188247, 702512, 2621849, 9784832, 36517535, 136285248, 508623521, 1898208768, 7084211623, 26438637648, 98670339049, 368242718464, 1374300534895, 5128959421024, 19141537149297, 71437189176064
Offset: 1
Keywords
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x)=1 -> 1 p(1,x)=2x -> 2x p(2,x)=4+x+3x^2 -> 7+4x p(3,x)=16x+4x^2+4x^3 -> 16+20x p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 73+68x. From these, read A192376=(1,0,7,16,73,...) and A192377=(0,2,4,20,68,...).
Programs
-
Mathematica
q[x_] := x + 2; d = Sqrt[x + 1]; p[n_, x_] := ((x + d)^n - (x - d)^ n )/(2 d) (* Cf. A162517 *) Table[Expand[p[n, x]], {n, 1, 6}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192376 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192377 *) Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192378 *)
Formula
Conjecture: a(n) = 2*a(n-1)+6*a(n-2)+2*a(n-3)-a(n-4). G.f.: x*(x-1)^2 / ((x+1)^2*(x^2-4*x+1)). - Colin Barker, May 11 2014
Comments