cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192376 Constant term of the reduction by x^2->x+2 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 0, 7, 16, 73, 256, 975, 3616, 13521, 50432, 188247, 702512, 2621849, 9784832, 36517535, 136285248, 508623521, 1898208768, 7084211623, 26438637648, 98670339049, 368242718464, 1374300534895, 5128959421024, 19141537149297, 71437189176064
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+1). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 16+20x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 73+68x.
From these, read A192376=(1,0,7,16,73,...) and A192377=(0,2,4,20,68,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 2; d = Sqrt[x + 1];
    p[n_, x_] := ((x + d)^n - (x - d)^ n )/(2 d)   (* Cf. A162517 *)
    Table[Expand[p[n, x]], {n, 1, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1,  30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192376 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192377 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192378 *)

Formula

Conjecture: a(n) = 2*a(n-1)+6*a(n-2)+2*a(n-3)-a(n-4). G.f.: x*(x-1)^2 / ((x+1)^2*(x^2-4*x+1)). - Colin Barker, May 11 2014

A192377 Coefficient of x in the reduction by x^2->x+2 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 2, 4, 20, 68, 262, 968, 3624, 13512, 50442, 188236, 702524, 2621836, 9784846, 36517520, 136285264, 508623504, 1898208786, 7084211604, 26438637668, 98670339028, 368242718486, 1374300534872, 5128959421048, 19141537149272, 71437189176090
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2d), where d=sqrt(x+1). A192377=2*A192378. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0,x)=1 -> 1
  p(1,x)=2x -> 2x
  p(2,x)=4+x+3x^2 -> 7+4x
  p(3,x)=16x+4x^2+4x^3 -> 16+20x
  p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 73+68x.
From these, read (0,2,4,20,68,...)
		

Crossrefs

Programs

Formula

From Colin Barker, Dec 09 2012: (Start)
a(n) = 2*a(n-1) + 6*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: 2*x^2 / ((x+1)^2*(x^2-4*x+1)). (End)
Showing 1-2 of 2 results.