A192380 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 2, 4, 20, 60, 230, 776, 2792, 9720, 34410, 120780, 425788, 1497716, 5274190, 18562320, 65348560, 230024944, 809742418, 2850375060, 10033806180, 35320352940, 124333050422, 437670231064, 1540664252600, 5423363437800, 19091038878650, 67203259647836
Offset: 1
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x)=1 -> 1 p(1,x)=2x -> 2x p(2,x)=2+x+3x^2 -> 5+4x p(3,x)=8x+4x^2+4x^3 -> 8+20x p(4,x)=4+4x+21x^2+10x^3+5x^4 -> 45+60x. From these, read A192379=(1,0,5,8,45,...) and A192380=(0,2,4,20,60,...)
Links
- Index entries for linear recurrences with constant coefficients, signature (2,6,-2,-1).
Programs
-
Mathematica
(See A192379.)
Formula
a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: 2*x^2 / (x^4+2*x^3-6*x^2-2*x+1). [Colin Barker, Dec 09 2012]
Comments