Original entry on oeis.org
0, 1, 2, 10, 30, 115, 388, 1396, 4860, 17205, 60390, 212894, 748858, 2637095, 9281160, 32674280, 115012472, 404871209, 1425187530, 5016903090, 17660176470, 62166525211, 218835115532, 770332126300, 2711681718900, 9545519439325, 33601629823918
Offset: 1
A192379
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 0, 5, 8, 45, 128, 505, 1680, 6089, 21120, 74909, 262680, 926485, 3258112, 11474865, 40382752, 142171985, 500432640, 1761656821, 6201182760, 21829269181, 76841888640, 270495370025, 952182350768, 3351823875225, 11798909226368
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=2+x+3x^2 -> 5+4x
p(3,x)=8x+4x^2+4x^3 -> 8+20x
p(4,x)=4+4x+21x^2+10x^3+5x^4 -> 45+60x.
From these, read A192379=(1,0,5,8,45,...) and A192380=(0,2,4,20,60,...).
-
q[x_] := x + 1; d = Sqrt[x + 2];
p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* Cf. A162517 *)
Table[Expand[p[n, x]], {n, 1, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192379 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192380 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192381 *)
A356569
Sums of powers of roots of x^4 - 2*x^3 - 6*x^2 + 2*x + 1.
Original entry on oeis.org
4, 2, 16, 38, 164, 522, 1936, 6638, 23684, 82802, 292496, 1027798, 3621284, 12741562, 44862736, 157904478, 555880964, 1956721762, 6888057616, 24246779398, 85352580004, 300452999402, 1057639862416
Offset: 0
a(3) = (-1.7936045...)^3 + (-0.28407904...)^3 + (0.55753652...)^3 + (3.5201470...)^3 = 38, as expected.
-
Table[Sum[(Sec[k Pi/20]/Sqrt[2] - 1)^n, {k, {1, 7, 9, 17}}], {n, 0, 30}] // Round
-
polsym(x^4 - 2*x^3 - 6*x^2 + 2*x + 1, 22) \\ Joerg Arndt, Aug 14 2022
Showing 1-3 of 3 results.
Comments