cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A192381 (A192380)/2.

Original entry on oeis.org

0, 1, 2, 10, 30, 115, 388, 1396, 4860, 17205, 60390, 212894, 748858, 2637095, 9281160, 32674280, 115012472, 404871209, 1425187530, 5016903090, 17660176470, 62166525211, 218835115532, 770332126300, 2711681718900, 9545519439325, 33601629823918
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

(See A192380.)

Examples

			(See A192380.)
		

Crossrefs

Programs

A192379 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 0, 5, 8, 45, 128, 505, 1680, 6089, 21120, 74909, 262680, 926485, 3258112, 11474865, 40382752, 142171985, 500432640, 1761656821, 6201182760, 21829269181, 76841888640, 270495370025, 952182350768, 3351823875225, 11798909226368
Offset: 1

Views

Author

Clark Kimberling, Jun 29 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=2+x+3x^2 -> 5+4x
p(3,x)=8x+4x^2+4x^3 -> 8+20x
p(4,x)=4+4x+21x^2+10x^3+5x^4 -> 45+60x.
From these, read A192379=(1,0,5,8,45,...) and A192380=(0,2,4,20,60,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1; d = Sqrt[x + 2];
    p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d)   (* Cf. A162517 *)
    Table[Expand[p[n, x]], {n, 1, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]   (* A192379 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]   (* A192380 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}]   (* A192381 *)

Formula

Conjecture: a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: -x*(x^2+2*x-1) / (x^4+2*x^3-6*x^2-2*x+1). - Colin Barker, May 11 2014

A356569 Sums of powers of roots of x^4 - 2*x^3 - 6*x^2 + 2*x + 1.

Original entry on oeis.org

4, 2, 16, 38, 164, 522, 1936, 6638, 23684, 82802, 292496, 1027798, 3621284, 12741562, 44862736, 157904478, 555880964, 1956721762, 6888057616, 24246779398, 85352580004, 300452999402, 1057639862416
Offset: 0

Views

Author

Greg Dresden and Ding Hao, Aug 12 2022

Keywords

Comments

The four roots of x^4 - 2*x^3 - 6*x^2 + 2*x + 1, in order from smallest to largest, are c1 = sec(17*Pi/20)/sqrt(2) - 1, c2 = sec(Pi/20)/sqrt(2) - 1 = -A158934, c3 = sec(7*Pi/20)/sqrt(2) - 1, and c4 = sec(9*Pi/20)/sqrt(2) - 1.

Examples

			a(3) = (-1.7936045...)^3 + (-0.28407904...)^3 + (0.55753652...)^3 + (3.5201470...)^3 = 38, as expected.
		

Crossrefs

Cf. A192380, A158934 (-c2).

Programs

  • Mathematica
    Table[Sum[(Sec[k Pi/20]/Sqrt[2] - 1)^n, {k, {1, 7, 9, 17}}], {n, 0, 30}] // Round
  • PARI
    polsym(x^4 - 2*x^3 - 6*x^2 + 2*x + 1, 22) \\ Joerg Arndt, Aug 14 2022

Formula

a(n) = 2*a(n-1) + 6*a(n-2) - 2*a(n-3) - a(n-4).
G.f.: 2*(2-3*x-6*x^2+x^3)/(1-2*x-6*x^2+2*x^3+x^4).
a(n) = b(n+1) + 6*b(n) - 3*b(n-1) - 2*b(n-2) for b(n) = A192380(n).
Showing 1-3 of 3 results.