cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192382 Coefficient of x in the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, 1398784, 5591040, 22372352, 89473024, 357924864, 1431633920, 5726666752, 22906404864, 91626143744, 366503526400, 1466016202752, 5864060616704, 23456250855424, 93824986644480
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d = sqrt(x+2). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+2, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0, x) = 1 -> 1.
  p(1, x) = 2*x -> 2*x.
  p(2, x) = 2 + x + 3*x^2 -> 8 + 4*x.
  p(3, x) = 8*x + 4*x^2 + 4*x^3 -> 16 + 24*x.
  p(4, x) = 4 + 4*x + 21*x^2 + 10*x^3 + 5*x^4 -> 96 + 80*x.
From these, read A083086 = (1, 0, 9, 16, 96, ...) and A192382 =(0, 2, 4, 24, 80, ...).
		

Crossrefs

Programs

  • Magma
    [(4^(n-1) - (-2)^(n-1))/3: n in [1..40]]; // G. C. Greubel, Feb 19 2023
    
  • Maple
    seq(4^n*(1-(-1/2)^n)/3, n=0..24); # Peter Luschny, Oct 02 2019
  • Mathematica
    q[x_]:= x+2; d= Sqrt[x+2];
    p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2 d); (* suggested by A162517 *)
    Table[Expand[p[n, x]], {n, 6}]
    reductionRules= {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x*q[x]^((y- 1)/2)};
    t = Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,30}];
    Table[Coefficient[Part[t,n], x, 0], {n,30}] (* abs value of A083086 *)
    Table[Coefficient[Part[t,n], x, 1], {n,30}] (* 2*A003683 *)
    Table[Coefficient[Part[t,n]/2, x, 1], {n,30}] (* A003683 *)
    LinearRecurrence[{2,8}, {0,2}, 40] (* G. C. Greubel, Feb 19 2023 *)
  • SageMath
    [(4^(n-1) - (-2)^(n-1))/3 for n in range(1,41)] # G. C. Greubel, Feb 19 2023

Formula

Conjectures from Colin Barker, May 12 2014: (Start)
a(n) = 2^(n-2)*(2*(-1)^n + 2^n)/3 = 2*A003683(n-1).
a(n) = 2*a(n-1) + 8*a(n-2).
G.f.: 2*x^2 / ((1+2*x)*(1-4*x)). (End).
a(n) = 4^n*(1 - (-1/2)^n)/3. - Peter Luschny, Oct 02 2019
E.g.f: (1/3)*(2 + exp(2*x))*(sinh(x))^2. - G. C. Greubel, Feb 19 2023