cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192384 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 2, 4, 24, 72, 312, 1088, 4288, 15744, 60192, 224832, 851072, 3197056, 12062592, 45398016, 171104256, 644354048, 2427699712, 9144222720, 34448209920, 129761986560, 488821962752, 1841370087424, 6936475090944, 26129575084032
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d = sqrt(x+3). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0, x) = 1 -> 1
  p(1, x) =     2*x -> 2*x
  p(2, x) = 3 +   x +  3*x^2 -> 6 + 4*x
  p(3, x) =    12*x +  4*x^2 +  4*x^3 -> 8 + 24*x
  p(4, x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 60 + 72*x.
From these, read A192383 = (1, 0, 6, 8, 60, ...) and A192384 = (0, 2, 4, 24, 72, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41);
    [0] cat Coefficients(R!( 2*x^2/(1-2*x-8*x^2+4*x^3+4*x^4) )) // G. C. Greubel, Jul 10 2023
    
  • Mathematica
    (See A192383.)
    LinearRecurrence[{2,8,-4,-4}, {0,2,4,24}, 40] (* G. C. Greubel, Jul 10 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192384
        if (n<5): return (0,0,2,4,24)[n]
        else: return 2*a(n-1) +8*a(n-2) -4*a(n-3) -4*a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023

Formula

From Colin Barker, Dec 09 2012: (Start)
a(n) = 2*a(n-1) + 8*a(n-2) - 4*a(n-3) - 4*a(n-4).
G.f.: 2*x^2/(1-2*x-8*x^2+4*x^3+4*x^4). (End)
From G. C. Greubel, Jul 10 2023: (Start)
T(n, k) = [x^k] ((x+sqrt(x+3))^n - (x-sqrt(x+3))^n)/(2*sqrt(x+3)).
a(n) = Sum_{k=0..n-1} T(n, k)*Fibonacci(k). (End)

A192385 a(n) = A192384(n)/2.

Original entry on oeis.org

0, 1, 2, 12, 36, 156, 544, 2144, 7872, 30096, 112416, 425536, 1598528, 6031296, 22699008, 85552128, 322177024, 1213849856, 4572111360, 17224104960, 64880993280, 244410981376, 920685043712, 3468237545472, 13064787542016
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41);
    [0] cat Coefficients(R!( x^2/(1-2*x-8*x^2+4*x^3+4*x^4) )); // G. C. Greubel, Jul 10 2023
    
  • Mathematica
    (See A192384.)
    LinearRecurrence[{2,8,-4,-4}, {0,1,2,12}, 40] (* G. C. Greubel, Jul 10 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192385
        if (n<5): return (0,0,1,2,12)[n]
        else: return 2*a(n-1) +8*a(n-2) -4*a(n-3) -4*a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023

Formula

From G. C. Greubel, Jul 10 2023: (Start)
T(n, k) = [x^k] ((x+sqrt(x+3))^n - (x-sqrt(x+3))^n)/(2*sqrt(x+3)).
a(n) = (1/2)*Sum_{k=0..n-1} T(n, k)*Fibonacci(k).
a(n) = 2*a(n-1) + 8*a(n-2) - 4*a(n-3) - 4*a(n-4).
G.f.: x^2/(1 - 2*x - 8*x^2 + 4*x^3 + 4*x^4). (End)
Showing 1-2 of 2 results.