A192387 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
0, 2, 4, 32, 96, 512, 1856, 8576, 33792, 147456, 602112, 2566144, 10637312, 44892160, 187269120, 787087360, 3292069888, 13812760576, 57837355008, 242497880064, 1015868817408, 4258009186304, 17841063460864, 74771320537088, 313317428035584
Offset: 1
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x) = 1 -> 1 p(1,x) = 2*x -> 2*x p(2,x) = 3 + x + 3*x^2 -> 8 + 4*x p(3,x) = 12*x + 4*x^2 + 4*x^3 -> 8 + 32*x p(4,x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 96 + 96*x. From these, read A192386 = (1, 0, 8, 8, 96, ...) and a(n) = (0, 2, 4, 32, 96, ...).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,12,-8,-16).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!( 2*x^2/(1-2*x-12*x^2+8*x^3+16*x^4) )); // G. C. Greubel, Jul 10 2023 -
Mathematica
(See A192386.) LinearRecurrence[{2,12,-8,-16}, {0,2,4,32}, 40] (* G. C. Greubel, Jul 10 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A192387 if (n<5): return (0,0,2,4,32)[n] else: return 2*a(n-1) +12*a(n-2) -8*a(n-3) -16*a(n-4) [a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023
Formula
From Colin Barker, Dec 09 2012: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) - 8*a(n-3) - 16*a(n-4).
G.f.: 2*x^2/(1-2*x-12*x^2+8*x^3+16*x^4). (End)
a(n) = 2^n*A112576(n). - R. J. Mathar, Mar 08 2021
From G. C. Greubel, Jul 10 2023: (Start)
T(n, k) = [x^k] ((x+sqrt(x+5))^n - (x-sqrt(x+5))^n)/(2*sqrt(x+5)).
a(n) = Sum_{k=0..n-1} T(n, k)*Fibonacci(k). (End)
Comments