cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192387 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 2, 4, 32, 96, 512, 1856, 8576, 33792, 147456, 602112, 2566144, 10637312, 44892160, 187269120, 787087360, 3292069888, 13812760576, 57837355008, 242497880064, 1015868817408, 4258009186304, 17841063460864, 74771320537088, 313317428035584
Offset: 1

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)^n - (x-d)^n)/(2*d), where d = sqrt(x+5). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0,x) = 1 -> 1
  p(1,x) =     2*x -> 2*x
  p(2,x) = 3 +   x +  3*x^2 -> 8 + 4*x
  p(3,x) =    12*x +  4*x^2 +  4*x^3 -> 8 + 32*x
  p(4,x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 96 + 96*x.
From these, read A192386 = (1, 0, 8, 8, 96, ...) and a(n) = (0, 2, 4, 32, 96, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41);
    [0] cat Coefficients(R!( 2*x^2/(1-2*x-12*x^2+8*x^3+16*x^4) )); // G. C. Greubel, Jul 10 2023
    
  • Mathematica
    (See A192386.)
    LinearRecurrence[{2,12,-8,-16}, {0,2,4,32}, 40] (* G. C. Greubel, Jul 10 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192387
        if (n<5): return (0,0,2,4,32)[n]
        else: return 2*a(n-1) +12*a(n-2) -8*a(n-3) -16*a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023

Formula

From Colin Barker, Dec 09 2012: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) - 8*a(n-3) - 16*a(n-4).
G.f.: 2*x^2/(1-2*x-12*x^2+8*x^3+16*x^4). (End)
a(n) = 2^n*A112576(n). - R. J. Mathar, Mar 08 2021
From G. C. Greubel, Jul 10 2023: (Start)
T(n, k) = [x^k] ((x+sqrt(x+5))^n - (x-sqrt(x+5))^n)/(2*sqrt(x+5)).
a(n) = Sum_{k=0..n-1} T(n, k)*Fibonacci(k). (End)