A192419 Smallest k such that 1^3, 2^3, 3^3,... n^3 are distinct modulo k.
1, 2, 3, 5, 5, 6, 10, 10, 10, 10, 11, 15, 15, 15, 15, 17, 17, 22, 22, 22, 22, 22, 23, 29, 29, 29, 29, 29, 29, 30, 33, 33, 33, 34, 41, 41, 41, 41, 41, 41, 41, 46, 46, 46, 46, 46, 47, 51, 51, 51, 51, 53, 53, 55, 55, 58, 58, 58, 59, 66, 66, 66, 66, 66, 66, 66, 69, 69, 69, 71, 71, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- P. Moree, H. Roskam, On an arithmetical function related to Euler's totient and the discriminator, Fib. Quart. 33 (4) (1995) 332-340
Programs
-
Maple
dis := proc(j,n) local k,s,i; for k from 1 do s := {} ; for i from 1 to n do s := s union { (i^j) mod k} ; end do: if nops(s) = n then return k; end if; end do: end proc: A192419 := proc(n) dis(3,n) ; end proc:
-
Mathematica
dmk[n_]:=Module[{k=1,res},While[res=Table[PowerMod[i,3,k],{i,n}]; Length[ res]!= Length[Union[res]],k++];k]; Array[dmk,90] (* Harvey P. Dale, Jan 28 2013 *)
-
PARI
A192419(nMax)={my(S=[],a=1);vector(nMax, n, S=concat(S,n^3); while(#Set(S%a)
M. F. Hasler, May 04 2016
Comments