A192423 Constant term of the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.
2, 0, 4, 2, 16, 20, 78, 140, 416, 878, 2324, 5280, 13282, 31200, 76724, 182962, 445376, 1069300, 2591118, 6239980, 15089776, 36389278, 87917284, 212144640, 512334722, 1236606720, 2985883684, 7207831202, 17402424496, 42011258900
Offset: 0
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x) = 2 -> 2 p(1,x) = x -> x p(2,x) = 2 + x^2 -> 4 + x p(3,x) = 3*x + x^3 -> 2 + 6*x p(4,x) = 2 + 4*x^2 + x^4 -> 16 + 9*x. From these, read a(n) = (2, 0, 4, 2, 16, ...) and A192424 = (0, 1, 1, 6, 9, ...).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-1,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 2*(1+x)*(1-2*x)/((1+x-x^2)*(1-2*x-x^2)) )); // G. C. Greubel, Jul 11 2023 -
Mathematica
q[x_]:= x+2; d= Sqrt[x^2+4]; p[n_, x_]:= ((x+d)/2)^n + ((x-d)/2)^n (* A161514 *) Table[Expand[p[n, x]], {n, 0, 6}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t= Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,0,30}] Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192423 *) Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192424 *) Table[Coefficient[Part[t, n]/2, x, 1], {n,30}] (* A192425 *) LinearRecurrence[{1,4,-1,-1}, {2,0,4,2}, 40] (* G. C. Greubel, Jul 11 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A192423 if (n<4): return (2,0,4,2)[n] else: return a(n-1) +4*a(n-2) -a(n-3) -a(n-4) [a(n) for n in range(41)] # G. C. Greubel, Jul 11 2023
Formula
From Colin Barker, May 11 2014: (Start)
a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4).
G.f.: 2*(1+x)*(1-2*x) / ((1+x-x^2)*(1-2*x-x^2)). (End)
From G. C. Greubel, Jul 11 2023: (Start)
a(n) = Sum_{j=0..n} T(n, j)*A078008(j), where T(n, k) = [x^k] ((x + sqrt(x^2+4))^n + (x - sqrt(x^2+4))^n)/2^n.
Comments