cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192424 a(n) = A192423(n)/2.

Original entry on oeis.org

1, 0, 2, 1, 8, 10, 39, 70, 208, 439, 1162, 2640, 6641, 15600, 38362, 91481, 222688, 534650, 1295559, 3119990, 7544888, 18194639, 43958642, 106072320, 256167361, 618303360, 1492941842, 3603915601, 8701212248, 21005629450
Offset: 0

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0,x) = 2 -> 2
  p(1,x) = x -> x
  p(2,x) = 2 + x^2 -> 4 + x
  p(3,x) = 3*x + x^3 -> 2 + 6*x
  p(4,x) = 2 + 4*x^2 + x^4 -> 16 + 9*x.
From these, read A192423(n) = 2*a(n) = (2, 0, 4, 2, 16, ...) and A192425 = (0, 1, 1, 6, 9, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-2*x)/((1+x-x^2)*(1-2*x-x^2)) )); // G. C. Greubel, Jul 12 2023
    
  • Mathematica
    (See A192423.)
    LinearRecurrence[{1,4,-1,-1}, {1,0,2,1}, 40] (* G. C. Greubel, Jul 12 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192424
        if (n<4): return (1,0,2,1)[n]
        else: return a(n-1) +4*a(n-2) -a(n-3) -a(n-4)
    [a(n) for n in range(41)] # G. C. Greubel, Jul 12 2023

Formula

From G. C. Greubel, Jul 11 2023: (Start)
a(n) = (1/2)*Sum_{j=0..n} T(n, j)*A078008(j), where T(n, k) = [x^k] ((x + sqrt(x^2+4))^n + (x - sqrt(x^2+4))^n)/2^n.
a(n) = (1/3)*((-1)^n*A000032(n) + A000129(n+1) - A000129(n)).
a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4).
G.f.: (1+x)*(1-2*x)/((1+x-x^2)*(1-2*x-x^2)). (End)