cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192426 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

2, 0, 5, 1, 18, 13, 81, 106, 413, 729, 2258, 4653, 12833, 28666, 74493, 173545, 437346, 1041421, 2583089, 6221322, 15304541, 37079289, 90826994, 220729069, 539487297, 1313161498, 3205831869, 7809748489, 19054635650, 46439068365
Offset: 0

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d = sqrt(x^2+8). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0,x) = 2 -> 2
  p(1,x) = x -> x
  p(2,x) = 4 + x^2 -> 5 + x
  p(3,x) = 6*x + x^3 -> 1 + 8*x
  p(4,x) = 8 + 8*x^2 + x^4 -> 18 + 11*x.
From these, read a(n) = (2, 0, 5, 1, 18, ...) and A192427 = (0, 1, 1, 8, 11, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-2*x-5*x^2)/(1-x-5*x^2+2*x^3+4*x^4) )); // G. C. Greubel, Jul 12 2023
    
  • Mathematica
    q[x_]:= x+1; d= Sqrt[x^2+8];
    p[n_, x_]:= ((x+d)/2)^n + ((x-d)/2)^n (* suggested by A162514 *)
    Table[Expand[p[n, x]], {n, 0, 6}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t= Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,0,30}]
    Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192426 *)
    Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192427 *)
    LinearRecurrence[{1,5,-2,-4}, {2,0,5,1}, 40] (* G. C. Greubel, Jul 12 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192426
        if (n<4): return (2,0,5,1)[n]
        else: return a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4)
    [a(n) for n in range(41)] # G. C. Greubel, Jul 12 2023

Formula

From Colin Barker, May 12 2014: (Start)
a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4).
G.f.: (2-2*x-5*x^2)/(1-x-5*x^2+2*x^3+4*x^4). (End)
a(n) = Sum_{k=0..n} T(n, k)*Fibonacci(k-1), where T(n, k) = [x^k] ((x + sqrt(x^2+8))^n + (x - sqrt(x^2+8))^n)/2^n. - G. C. Greubel, Jul 12 2023

Extensions

Typo in name corrected by G. C. Greubel, Jul 12 2023