cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192427 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 1, 1, 8, 11, 45, 80, 251, 517, 1432, 3195, 8317, 19360, 48827, 116213, 288360, 694331, 1708397, 4138480, 10138363, 24636645, 60217912, 146570491, 357833309, 871703360, 2126857275, 5183425493, 12642971912, 30819571387, 75160150861
Offset: 0

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d = sqrt(x^2+8). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0,x) = 2 -> 2
  p(1,x) = x -> x
  p(2,x) = 4 + x^2 -> 5 + x
  p(3,x) = 6*x + x^3 -> 1 + 8*x
  p(4,x) = 8 + 8*x^2 + x^4 -> 18 + 11*x.
From these, read A192426 = (2, 0, 5, 1, 18, ...) and a(n) = (0, 1, 1, 8, 11, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+2*x^2)/(1-x-5*x^2+2*x^3+4*x^4) )); // G. C. Greubel, Jul 13 2023
    
  • Mathematica
    (See A192426.)
    LinearRecurrence[{1,5,-2,-4}, {0,1,1,8}, 40] (* G. C. Greubel, Jul 13 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192427
        if (n<4): return (0,1,1,8)[n]
        else: return a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4)
    [a(n) for n in range(41)] # G. C. Greubel, Jul 13 2023

Formula

From Colin Barker, May 12 2014: (Start)
a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4).
G.f.: x*(1+2*x^2)/(1-x-5*x^2+2*x^3+4*x^4). (End)
a(n) = Sum_{k=0..n} T(n, k)*Fibonacci(k), where T(n, k) = [x^k] ((x + sqrt(x^2+8))^n + (x - sqrt(x^2+8))^n)/2^n. - G. C. Greubel, Jul 13 2023

Extensions

Typo in name corrected by G. C. Greubel, Jul 13 2023