cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192464 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n).

Original entry on oeis.org

2, 4, 7, 16, 38, 95, 242, 624, 1619, 4216, 11002, 28747, 75170, 196652, 514607, 1346880, 3525566, 9229063, 24160402, 63250168, 165586907, 433505384, 1134920882, 2971243731, 7778788418, 20365086100, 53316412567, 139584058864, 365435613974, 956722540271
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. The coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n) is 2*A051450.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(1,x) = 1 + x   + x^2 ->  2 +  2x
p(2,x) = 1 + x^2 + x^4 ->  4 +  4x
p(3,x) = 1 + x^3 + x^6 ->  7 + 10x
p(4,x) = 1 + x^4 + x^8 -> 16 + 24x.
From these, read
A192464 = (2, 4, 7, 16, ...) and 2*A051450 = (2, 4, 10, 24, ...).
		

Crossrefs

Programs

  • Mathematica
    Remove["Global`*"];
    q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n);
    Table[Simplify[p[n, x]], {n, 1, 5}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
    (* A192464 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
    (* 2*A051450 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}]
    (* A051450 *)
    Table[1-Fibonacci[n]+Fibonacci[1+n]-Fibonacci[2n]+Fibonacci[1+2n], {n, 1, 29}]
    (* Friedjof Tellkamp, Nov 22 2021 *)

Formula

G.f.: -x*(3*x^4-7*x^3-x^2+6*x-2)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, Nov 12 2012
a(n) = 1 - Fibonacci(n) + Fibonacci(1+n) - Fibonacci(2n) + Fibonacci(1+2n). - Friedjof Tellkamp, Nov 22 2021