cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192479 a(n) = 2^n*C(n-1) - A186997(n-1), where C(n) are the Catalan numbers (A000108).

Original entry on oeis.org

1, 3, 12, 61, 344, 2074, 13080, 85229, 569264, 3876766, 26817304, 187908802, 1330934032, 9513485076, 68539442800, 497178707325, 3628198048352, 26617955242806, 196205766112536, 1452410901340598, 10792613273706320
Offset: 1

Views

Author

Volkan Yildiz, Jul 01 2011

Keywords

Comments

a(n) is the number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions connected by the binary connective of implication.

Crossrefs

Cf. A186997.

Programs

  • Maple
    C := proc(n) binomial(2*n,n)/(n+1) ;end proc:
    Yildf := proc(n) option remember; if n<=1 then 1; else add( (2^i*C(i-1)-procname(i))*procname(n-i),i=1..n-1) ; end if; end proc:
    A192479 := proc(n) 2^n*C(n-1)-Yildf(n) ; end proc:
    seq(A192479(n),n=1..30) ; # R. J. Mathar, Jul 13 2011
  • Mathematica
    a[1] = 1; a[n_] := 2^n*CatalanNumber[n-1] - Sum[Binomial[k, n-k-1]*Binomial[n+2*k-1, n+k-1]/(n+k), {k, 1, n-1}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2015 *)

Formula

a(n) = 2^n*C(n) - f(n), with f(n) = Sum_{i=1..n-1} (2^i*C(i)-f(i))*f(n-i), starting f(0)=f(1)=1, where C(i) = A000108(i-1).
G.f.: 1 - 1/A186997(x). - Vladimir Kruchinin, Feb 17 2013
a(n+1) = Sum_{k=1..n+1} (binomial(k,n-k+1)*binomial(n+2*k-1,k))/(n+k), a(1)=1. - Vladimir Kruchinin, May 15 2014