cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192480 a(n) = n + A000108(n-1) for n > 1; a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 5, 9, 19, 48, 139, 437, 1439, 4872, 16807, 58798, 208025, 742914, 2674455, 9694861, 35357687, 129644808, 477638719, 1767263210, 6564120441, 24466267042, 91482563663, 343059613674, 1289904147349, 4861946401478, 18367353072179, 69533550916032
Offset: 0

Views

Author

Volkan Yildiz, Jul 01 2011

Keywords

Comments

a(n) is the number of components of the n-th Catalan tree A_n.

Crossrefs

Cf. A000108.

Programs

  • Maple
    C := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A192480 := proc(n) if n <=1 then n; else n+C(n-1) ; end if; end proc:
    seq(A192480(n),n=0..40) ; # R. J. Mathar, Jul 13 2011
  • Mathematica
    CoefficientList[Series[(2*x^2*(2 - x) + (1 - x)^2*(1 - Sqrt[1 - 4*x]))/(2*(1 - x)^2), {x,0,50}], x] (* G. C. Greubel, Mar 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((2*x^2*(2-x)+(1-x)^2*(1-sqrt(1-4*x)))/(2*(1-x)^2))) \\ G. C. Greubel, Mar 28 2017

Formula

G.f.: (2*x^2*(2-x)+(1-x)^2*(1-sqrt(1-4*x)))/(2*(1-x)^2).
For large n, a(n) ~ (2^(2n) +n^2*sqrt(Pi*n)) / sqrt(Pi *n^3).
Conjecture: n*(3*n^2-16*n+19)*a(n) +(-15*n^3+95*n^2-188*n+120)*a(n-1) +2*(2*n-5)*(3*n^2-10*n+6)*a(n-2)=0. - R. J. Mathar, Jun 14 2016