A192482 a(n) = 2^n*C(n-1)-y(n), where y(n) = Sum_{i=1..n-1} (2^i*C(i-1)-y(i))*(2^(n-i)*C(n-i-1)-y(n-i)), y(0)=0, y(1)=1 and where C(i) is the i-th Catalan number.
1, 3, 10, 51, 286, 1710, 10740, 69763, 464822, 3159450, 21821516, 152708078, 1080452972, 7716009724, 55545950568, 402649640163, 2936600795174, 21532660592418, 158645924209500, 1173875395710458, 8719519396134596, 64995349923442628, 486020221692290392
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
- Volkan Yildiz, Counting false entries in truth tables of bracketed formulas connected by m-implication, arXiv:1203.4645 [math.CO], 2012.
Programs
-
Maple
C:= n-> binomial(2*n, n)/(n+1): y:= proc(n) option remember; `if`(n<2, n, add((2^i *C(i-1) -y(i))* (2^(n-i)*C(n-i-1)-y(n-i)), i=1..n-1)) end: a:= n-> 2^n*C(n-1) -y(n): seq(a(n), n=1..30); # Alois P. Heinz, Feb 06 2012
-
Mathematica
c = CatalanNumber; y[n_] := y[n] = If[n<2, n, Sum[(2^i*c[i-1]-y[i])*(2^(n-i)*c[n-i-1] - y[n-i]), {i, 1, n-1}]]; a[n_] := 2^n*c[n-1]-y[n]; Table[ a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
Formula
a(n) = 2^n*C(n-1)-y(n), where y(n) = Sum_{i=1..n-1} (2^i*C(i-1)-y(i))*(2^(n-i)*C(n-i-1)-y(n-i)), y(0)=0, y(1)=1 and C(i) is the i-th Catalan number.
Comments