cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192502 G.f. satisfies: A(x) = 1 + x*f(x, A(x)) where f(,) is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 2, 4, 10, 36, 136, 548, 2316, 10050, 44426, 199666, 910090, 4196984, 19545844, 91791112, 434181656, 2066656564, 9891669820, 47578282002, 229858639366, 1114895656402, 5427058308018, 26503888167186, 129821343271168, 637626106479490
Offset: 0

Views

Author

Paul D. Hanna, Jul 03 2011

Keywords

Comments

Ramanujan's two-variable theta function is defined by:
f(a,b) = Sum_{n=-infinity..+infinity} a^(n*(n+1)/2) * b^(n*(n-1)/2).

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 36*x^4 + 136*x^5 + 548*x^6 +...
The g.f. A = A(x) satisfies:
(1) A = 1+x + x*[(x+A) + x*A*(x^2+A^2) + x^3*A^3*(x^3+A^3) + x^6*A^6*(x^4+A^4) + x^10*A^10*(x^5+A^5) +...].
(2) A = 1 + x*(1+x)*(1+A)*(1-x*A)* (1+x^2*A)*(1+x*A^2)*(1-x^2*A^2)* (1+x^3*A^2)*(1+x^2*A^3)*(1-x^3*A^3)* (1+x^4*A^3)*(1+x^3*A^4)*(1-x^4*A^4)*...
		

Programs

  • Mathematica
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == 1 + r*QPochhammer[-r, r*s] * QPochhammer[-s, r*s] *  QPochhammer[r*s], r*(-1 + s) * Derivative[0, 1][QPochhammer][-r, r*s] / QPochhammer[-r, r*s] + r^2*QPochhammer[-r, r*s] * QPochhammer[r*s] * Derivative[0, 1][QPochhammer][-s, r*s] + (-1 + s)*(-((2*Log[1 - r*s] + QPolyGamma[0, 1, r*s] + QPolyGamma[0, Log[-s]/Log[r*s], r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s] / QPochhammer[r*s]) == 1}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x+x*sum(m=1,sqrtint(2*n)+1,(x*A+x*O(x^n))^(m*(m-1)/2)*(x^m+A^m)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,q=x*(A+O(x^n));A=1+x*prod(m=0,n,(1+x*q^m)*(1+A*q^m)*(1-q^(m+1))) );polcoeff(A,n)}

Formula

G.f. satisfies:
(1) A(x) = 1+x + x*Sum_{n>=1} (x*A(x))^(n*(n-1)/2) * (x^n + A(x)^n).
(2) A(x) = 1 + x*Product_{n>=0} (1+x*q^n)*(1+A(x)*q^n)*(1-q^(n+1)) where q=x*A(x), due to Jacobi's triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 5.2286591857647664516287778... and c = 0.4431871616898705063582... - Vaclav Kotesovec, Sep 04 2017
Formula (2) can be rewritten as the functional equation y = 1 + x*QPochhammer(-x, x*y) * QPochhammer(-y, x*y) * QPochhammer(x*y). - Vaclav Kotesovec, Jan 19 2024