cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192540 G.f.: A(x) = Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (-x)^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 2, 6, 20, 70, 255, 960, 3707, 14597, 58382, 236522, 968597, 4003061, 16674858, 69936760, 295092057, 1251747436, 5334958079, 22834290248, 98108081192, 422986894605, 1829443421394, 7935301625600, 34510975557383, 150456011512671, 657415433062780
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2011

Keywords

Comments

Related q-series: Sum_{n>=0} (-q)^(n*(n+1)/2) = q^(-1/8)*eta(q)*eta(q^4)/eta(q^2) is a g.f. of A106459.

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 70*x^6 + 255*x^7 + ...
The g.f. A = A(x) satisfies the following relations:
(1) A = x/(1 - A - A^3 + A^6 + A^10 - A^15 - A^21 + A^28 + A^36 + ...).
(2) A = x/((1-A)*(1+A^2)* (1-A^2)*(1+A^4)* (1-A^3)*(1+A^6)* (1-A^4)*(1+A^8)*...).
(3) A = x/((1-A)*(1-A^4)* (1-A^3)*(1-A^8)* (1-A^5)*(1-A^12)* (1-A^7)*(1-A^16)*...).
(4) A = x*(1+A)/(1-A^2)* (1+A^3)/(1-A^4)* (1+A^5)/(1-A^6) * (1+A^7)/(1-A^8)*...
(5) A = x*(1-A^2)/(1-A)* (1-A^6)/(1-A^2)* (1-A^10)/(1-A^3)* (1-A^14)/(1-A^4)*...
(6) A = x*exp(A/(1-A) - A^2/(2*(1+A^2)) + A^3/(3*(1-A^3)) - A^4/(4*(1+A^4)) + ...).
(7) A = x*exp(A + A^2/2 + 4*A^3/3 + 5*A^4/4 + 6*A^5/5 +...+ A113184(n)*A^n/n + ...).
		

Crossrefs

Programs

  • Maple
    nmax:=27: with(gfun): f := proc(x): x*add((-x)^(n*(n+1)/2),n=0..nmax) end: S:=series(f(x),x,nmax): g:= seriestoseries(S,'revogf'): seq(coeftayl (g,x=0,n),n=1..nmax); # Johannes W. Meijer, Jul 04 2011
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*EllipticTheta[2, 0, Sqrt[-x]] / (2*(-x)^(1/8)), {x, 0, 30}], x], x]] (* Vaclav Kotesovec, Aug 17 2015 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, 8*(s/Sqrt[2*Pi*(77 - 8*(-s)^(7/8) *s*(Derivative[0, 0, 2][EllipticTheta][2, 0, Sqrt[-s]] / r))])} /. FindRoot[{2*r == -(-s)^(7/8)*EllipticTheta[2, 0, Sqrt[-s]], 2*(-s)^(11/8)*Derivative[0, 0, 1][EllipticTheta][2, 0, Sqrt[-s]] == 7*r}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
  • PARI
    {a(n)=polcoeff(serreverse(x*sum(m=0,sqrtint(2*n)+1,(-x)^(m*(m+1)/2)+x*O(x^n))),n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x/prod(m=1,n,(1 - A^m)*(1 + A^(2*m))+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x/prod(m=1,n\2,(1 - A^(2*m-1))*(1 - A^(4*m))+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*prod(m=1,n\2,(1 + A^(2*m-1))/(1 - A^(2*m)+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*prod(m=1,n,(1 - A^(4*m-2))/(1 - A^m+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2); for(i=1, n, A=x*exp(sum(m=1, n, -(-A+x*O(x^n))^m/(1+(-A)^m)/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=if(n<1,0,(1/n)*polcoeff(x/prod(k=1,n,(1-x^k)*(1+x^(2*k)+x*O(x^n)))^n,n))}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*exp(sum(m=1,n, A^m*sumdiv(m,d,(-1)^(m-d)*d)/m)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. satisfies:
(1) A(x) = x/[Sum_{n>=0} (-A(x))^(n*(n+1)/2)].
(2) A(x) = x/[Product_{n>=1} (1 - A(x)^n)*(1 + A(x)^(2*n))].
(3) A(x) = x/[Product_{n>=1} (1 - A(x)^(2*n-1))*(1 - A(x)^(4*n))].
(4) A(x) = x* Product_{n>=1} (1 + A(x)^(2*n-1))/(1 - A(x)^(2*n)).
(5) A(x) = x* Product_{n>=1} (1 - A(x)^(4*n-2))/(1 - A(x)^n).
(6) A(x) = x* exp( Sum_{n>=1} -(-A(x))^n/(n*(1 + (-A(x))^n)) ).
(7) A(x) = x* exp( Sum_{n>=1} A(x)^n*Sum_{d|n} (-1)^(n-d)*d/n ).
a(n) = [x^n] (1/n)*x/[Product_{k>=1} (1 - x^k)*(1 + x^(2*k))]^n for n >= 1.
a(n) ~ c * d^n / n^(3/2), where d = 4.6257905683677649210878404538251898489748116820946869227688637924996..., c = 0.1001072494040204029591345793571534412084516176488795... . - Vaclav Kotesovec, Aug 17 2015