cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192596 Monotonic ordering of set S generated by these rules: if x and y are in S and 3x+4y is a prime, then 3x+4y is in S, and 1 is in S.

Original entry on oeis.org

1, 7, 31, 97, 127, 409, 601, 769, 1231, 1657, 1831, 2017, 2311, 3079, 3169, 3457, 3631, 3697, 3943, 4201, 4999, 5479, 5521, 5881, 6079, 6151, 6607, 6961, 7057, 7129, 7321, 7417, 7687, 8089, 8161, 8431, 9127, 9241, 9337, 9511, 9631, 9871, 10009
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2011

Keywords

Comments

See the discussions at A192476 and A192580.

Crossrefs

Programs

  • Mathematica
    start = {1}; primes = Table[Prime[n], {n, 1, 10000}];
    f[x_, y_] := If[MemberQ[primes, 3 x + 4 y], 3 x + 4 y]
    b[x_] :=
      Block[{w = x},
       Select[Union[
         Flatten[AppendTo[w,
           Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1,
             Length[w]}]]]], # < 20000 &]];
    t = FixedPoint[b, start]    (* A192596 *)
    PrimePi[t]   (* A192597 *)

A192576 a(n) = sum(binomial(n,k)*floor(sqrt(Bell(k))),k=0..n).

Original entry on oeis.org

1, 2, 4, 9, 22, 58, 163, 478, 1439, 4415, 13780, 43757, 141400, 465016, 1555961, 5294885, 18315089, 64357854, 229601019, 831132731, 3051030786, 11351968321, 42788503744, 163309466037, 630861836558, 2465577001903, 9745376900983
Offset: 0

Views

Author

Emanuele Munarini, Jul 04 2011

Keywords

Crossrefs

The Bell numbers are A000110.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Floor[Sqrt[BellB[k]]],{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)*floor(sqrt(belln(k))),k,0,n),n,0,28);
Showing 1-2 of 2 results.