A192583 Monotonic ordering of set S generated by these rules: if x and y are in S and xy+1 is a prime, then xy+1 is in S, and 2, 4, 6, and 8 are in S.
2, 4, 5, 6, 8, 11, 13, 17, 23, 31, 37, 41, 47, 53, 67, 79, 83, 89, 103, 107, 137, 139, 149, 167, 179, 223, 269, 283, 317, 359, 499, 557, 619, 643, 719, 823, 857, 1097, 1193, 1433, 1439, 1699, 1997, 2153, 2477, 2879, 3343, 4457, 6857, 7159, 8599, 12919, 41143
Offset: 1
Crossrefs
Cf. A192476.
Programs
-
Mathematica
start = {2, 4, 6, 8}; primes = Table[Prime[n], {n, 1, 10000}]; f[x_, y_] := If[MemberQ[primes, x*y + 1], x*y + 1] b[x_] := Block[{w = x}, Select[Union[ Flatten[AppendTo[w, Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, i}]]]], # < 10000000 &]]; t = FixedPoint[b, start] (* A192583 *) PrimePi[t] (* A192530 Nonprimes 4,6,8 are represented by "next prime down". *)
Comments