cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192626 G.f. satisfies: A(x) = Product_{n>=0} (1 + x*(x+x^2)^n)^2/(1 - x*(x+x^2)^n)^2.

Original entry on oeis.org

1, 4, 12, 36, 100, 264, 676, 1684, 4096, 9764, 22888, 52872, 120540, 271600, 605556, 1337320, 2927720, 6358432, 13707916, 29351536, 62450468, 132090356, 277845120, 581405140, 1210688864, 2509483020, 5178969644, 10644112012, 21790816340, 44444609044
Offset: 0

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Comments

Related q-series identity due to Heine:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n));
here q=x+x^2, x=x, y=z=1.

Examples

			G.f.: A(x) = 1 + 4*x + 12*x^2 + 36*x^3 + 100*x^4 + 264*x^5 + 676*x^6 +...
where the g.f. equals the product:
A(x) = (1+x)^2/(1-x)^2 * (1+x^2*(1+x))^2/(1-x^2*(1+x))^2 * (1+x^3*(1+x)^2)^2/(1-x^3*(1+x)^2)^2 * (1+x^4*(1+x)^3)^2/(1-x^4*(1+x)^3)^2 *...
which is also equal to the sum:
A(x) = 1 + 4*x/((1-x)*(1-x*(1+x))) + 4*x^2*(1+x*(1+x))^2/((1-x)*(1-x*(1+x))*(1-x^2*(1+x))*(1-x^2*(1+x)^2)) + 4*x^3*(1+x*(1+x))^2*(1 + x^2*(1+x)^2)^2/((1-x)*(1-x*(1+x))*(1-x^2*(1+x))*(1-x^2*(1+x)^2)*(1-x^3*(1+x)^2)*(1-x^3*(1+x)^3)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);A=prod(k=0,n+1,(1+x*(x+x^2)^k)^2/(1-x*(x+x^2+x*O(x^n))^k)^2);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);A=1+sum(m=1,n,x^m*prod(k=0,m-1,(1+(x+x^2)^k)^2/((1-x*(x+x^2)^k +x*O(x^n))*(1-(x+x^2)^(k+1)))));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (1 + x^k*(1+x)^k)^2/((1 - x^(k+1)*(1+x)^k)*(1 - x^(k+1)*(1+x)^(k+1))) due to the Heine identity.
Self-convolution of A192627.